Mission Possible: Mapping the Quarry Walls

May 27th, 2013

ICELAND – We spent Sunday morning discussing all of the features that we’ve seen during our reconnaissance investigations. After comparing notes, we defined several lithofacies, or mappable units with specific lithologic features. Our coherent lithofacies include pillow lavas, dikes, and intrusions while our fragmental lithofacies are units like volcanic breccia and lapilli tuff. By the end of the morning, Team Iceland was ready for their first group assignment: map a section of the quarry wall.

The students worked diligently to record comprehensive field notes.

The students worked diligently to record comprehensive field notes.

Image of a pillow lava that shows some of the features the students were looking for: radial columnar joints, glassy rind, interbedded hyaloclastite.

Image of a pillow lava that shows some of the features the students were looking for: radial columnar joints, glassy rind, and interbedded hyaloclastite.

The students celebrated the completion of their mission with lunch by large mining equipment.

The students celebrated the completion of their mission with lunch by large mining equipment.

 

 

A Visit to the Utah Core Research Center

June 13th, 2012

SALT LAKE CITY, UTAH – On Tuesday, Team Utah visited the Core Research Center at the Utah Geological Survey. The repository includes cores and cuttings from more than 4000 wells, on-site microscope facilities, and a friendly and knowledgeable staff. We suspect that the sedimentary xenoliths that Kevin has been finding represent Lake Bonneville sediments. Tom Dempster and Peter Nielsen pulled out some cuttings for us to look at and set up the microscope. Mark Gwynn showed us some core that they recently recovered from an area near our study site.

Kevin examines some cuttings under a binocular microscope and projects the image so that we can discuss it as a group.

We also had the chance to meet with Amanda Hintz, a UGS geologist with an expertise in the Black Rock Desert.

Amanda so graciously gave us part of her day to answer our questions about bombs, xenoliths, lava flows, and faulting.

Finally, Stephanie Earls, the UGS Research Librarian, was so helpful in finding historic aerial photographs for us.

Matt, Dr. Judge, and Whitney examine the aerial photos, trying to make sense of the lava flows surrounding our cinder cone.

After a productive day at the research center, we visited Bingham Canyon on the way out of town.

View of the Bingham Canyon mine from the visitor's center.

Although it make for a long day and a late night, our trip to Salt Lake City was instrumental in helping us think about our field area as we wrap up our field season. Thanks to all of the folks at the UGS for their help!

 

The Joys of Mobbing

June 11th, 2012

FILLMORE, UTAH – [Guest Bloggers Matt Peppers, Whitney Sims, and Will Cary]

Wizard Will enjoys some early morning tomfoolery.

With our alarms set for 6:30, we guaranteed that we wouldn’t be up before 7 am. After a hurried lunch packing session, the group headed out to inaugurate Tricia into the research community. She will be doing a project focused on the origin of the basalt islands in the western channel. Hopefully, her project will be used as an analogue for the islands found in the rest of the lava field. We mobbed Tricia in the morning, and through a heroic effort, managed to complete her fieldwork in just under three hours. Dr. Shelley “The Machine” Judge burned through a majority of the 50 individual columnar joint orientation measurements that will help Tricia with her interpretations. While the measurement team ran through the orientation measurements, the rest of the group broke into two smaller teams to collect samples and track out the significant fractures in the area. With each person working toward his or her specialty, the data collection process flew by.

Mob mentality at work.

 

Riding high after a stellar group outing, we moved toward the western breach to take a look at a large fissure Dr. Pollock, Whitney, and Tricia had seen a few days before. When we came across the gaping fissure (nicknamed “Chubman”), we decided to take a well-earned lunch break in the shade of the nearby wall before tackling the measurement process. While Team Fissure worked on mapping and tracking the fissure in the northern end, Team Flow Bandits tracked the fissure south on their way to investigate the possibility of a nearby flow boundary. The familiar call and response of, “Whitney, do you want to take a sample here?” followed by a subdued, “Yes…” echoed throughout the flows as the day came to an end. We had a weary trek back through the sand and sagebrush back to the car, satisfied after a productive workday. Celebratory pie for desert was the icing on the cake to yet another day in paradise.

The "Chubman" Fissure dominates the landscape.

 

A Rocky Start

June 11th, 2012

FILLMORE, UTAH – Today’s return to field work after a fun day in Bryce Canyon was a little rocky at first.

We were a little confused about where to begin.

After a short while, we found our purpose.

Whitney and her team spent the day mapping lava flows that breached the northern rim of the cinder cone.

Fortunately, Whitney had Matt on her team, who chiseled samples from the solid rock with his raw strength.

Will and his team spent another day hunting bombs and blocks on the rim.

In the end, it was a fantastic field day. Will has nearly wrapped up his ballistics sampling and Whitney can practically redraw the lava flow map. Back to the lava fields tomorrow!

STOP, Hammer Time

June 8th, 2012

FILLMORE, UTAH – [Guest Bloggers Matt Peppers and Will Cary]

On the morning of the 8th, all seemed well. Much like days before, we all arose and began to pack our lunches for the day. However, as we piled into the car, an ominous light started to blink on the dashboard. Low tire pressure. Concerned, Dr. Judge pulled us into a nearby gas station and checked the tires. Much to our dismay, the left rear tire was 10 psi lower than it should be, a repeat occurrence from a few days earlier. Not wanting to jeopardize our upcoming Mystery Fun Day, Drs. Judge and Pollock made the decision to take the car into a repair shop to have the problem diagnosed. While they were gone, they left us to wreak havoc upon the KOA Kampground. We started by swimming and relaxing by the pool, and ended by swimming and relaxing by the pool. All before lunchtime. We retired to our individual cabins to enjoy the lunches we had packed a few hours earlier in glorious air conditioned komfort.

 

Around 1 pm, the professors returned and it was business as usual. Even though we had lost half of our day to a small hole in the tire (curse you, basalt!) we rushed out to mob Kevin’s project for the afternoon. Arriving on the cinder cone at peak temperature made for a challenging work environment (especially after having spent most of the day in a sun-induced stupor) but we turned the afternoon into a very productive, albeit rushed, day. After reviewing the wall Kevin had used to map his xenoliths, we spread out and tried to collect as many of the 16 different types as we could find. After a few small injuries, stumbles, artistic work with a rock hammer, and some sore hands trying to pry the xenoliths out of the uncooperative host rock, we amassed a small mountain of samples for Kevin. As Whitney struggled to bag and record the samples in the gusting wind, the rest of us made one last sweep of the area for any xenoliths to claim.

Aptly named, the "Avocado" xenolith inspired some dinner choices this evening.

The "Sparkly" xenolith refuses to show its nature in photographs.

 

The "Black and Green" xenolith.

Tricia demonstrates proper hammer usage.

We trooped back down the van, and made the dusty trek back to the kampsite, just in time to shower and recover before we left for dinner at six. After a quick stop to pick up a package containing some hardier field notebooks we went of to dinner followed by a stop for ice cream, where the professors revealed the Fun Trip they had planned for Saturday. We will be driving down to Bryce Canyon on the morrow to spend the day in the park. None of us have been there, so it promises to be a unique experience for us all!

Sailing the Basalt Isles

June 8th, 2012

FILLMORE, UTAH – [Guest Bloggers Whitney Sims and Kevin Silver]

As we arose for our fourth day of field study, the morning was chilly. However, this was to be short lived. A clear day unleashed the full power of the sun upon the Black Rock Desert as we parked our van and began our trek onto the lava flows once again.  It was Whitney and Matt’s day to lead again and the group was split in two to assist each of them.

Matt’s group was comprised of Dr. Judge, Kevin, and Will. Their goal was to look at the walls of the lava channel to find any structural features and to study the islands of basalt that were scattered across the floor of the lava channel. From there, they were planning to travel west towards a portion of the map that showed faulting near the end of the lava channel. Instead, they quickly deviated from the plan as the floor of the lava channel closer to the cinder cone showed great promise. Their day was spent tracking and measuring fissure fractures that ran both perpendicular and parallel to the walls of the lava channel. Many of these fissures were found to run right through the basalt islands. In addition, a large fault was discovered above the cliff face. Due to the wealth of data and the absolute lack of shade the study site provided, the work was very tedious and many of us, most noticeably the fairest-skinned of us, began suffering from exposure. It was a most joyous occasion when our two groups were reunited once more and were heading back to the van. Despite her preconceptions of horror, Dr. Judge found that accompanying the three boys in the field was nothing but pleasant interactions and behavior on the most professional of levels.

Tricia Hall standing on top of a basalt island

 

Whitney’s group was comprised of Dr. Pollock, Tricia, and Whitney. Their goal was to collect samples from different sections of the lava channel while travelling west to determine where the lava channel ended. They came upon what is believed to be the western breach of the flow that showed significant promise to Whitney’s project. Upon their trek, they came across a major fault that Dr. Pollock was really excited about.

 

Whitney Sims and Tricia Hall overlook a large fissure cutting through the lava flows of Ice Springs

The day was very productive and rich in data. It has become apparent that Matt currently holds the equivalent of three I.S. projects in his data and thus will not graduate in 2013. Whitney’s project is proving to be quite complex as Ice Springs is proving to hold some unusual structure and complexity within its flows. There is no certainty what future days in the field will reveal.

a lava tube, half filled with lava, in Ice Springs

What do volcanic bombs, xenoliths, and giant gypsum crystals have in common?

June 7th, 2012

FILLMORE, UTAH – What do volcanic bombs, xenoliths, and giant gypsum crystals have in common? Not much, except that we saw them all during our long and productive day. We met to pack lunches at 7:30 am and finished with student-faculty meetings at 10 pm, so we’re all ready for a good night’s rest, but we thought we’d give you a quick update on our progress.

We spent the morning as a mob on the rim of the cinder cone, searching for volcanic bombs for Will's ballistics study.

Will found a wide variety of bombs, or material that was explosively ejected from the volcano when it was molten. He made a number of measurements that he'll use in his mathematical models when he returns to Wooster.

In the afternoon, Kevin led a group to look for xenoliths, or foreign rock fragments, in a lava flow. This sedimentary xenolith is affectionately named Neopolitan.

At the end of the day, we visited with Larry Gehre, who so graciously showed us his amazing personal collection of rocks. If you have a sandstone feature in your aquarium, it probably came from Larry.

We were all impressed the size of the gypsum crystals in his scrap pile. Note Will's hat for scale.

Although it was long and challenging, the cool temperatures and partly cloudy skies made for a pleasant day in the field. Back to the lava fields tomorrow to check out some scarps and map flow boundaries. Wish us luck!

As We Walk Through Fields of Lava

June 6th, 2012

FILLMORE, UTAH – Whitney and Matt took charge today, leading us on an investigation of the lava flows that extend westward from the Miter cinder cone.

The view of Miter from its lava fields. A tiny reflective spec at its base on the right side of the photo is our van, for scale.

We picked our way across the sharp, rubbly flow surface and learned the importance of careful observation. Although we weren’t looking for bombs and xenoliths, we found both along our path.

A volcanic bomb that has been rafted or carried away from the cone by the lava flow.

Whitney had a successful day of mapping the margins and morphology of a couple of complicated lava flows.

Whitney stands on the boundary between an older, vegetated lava flow on the right and a younger, black lava flow on the left.

Matt’s productive day included finding a spectacular fault exposure, where he made lots of measurements on the fault and associated joints.

Kevin poses at the most significant fault locality, where some of the surfaces display plumose structures for joints and striae for fault motion.

Overall, it was a strong start to the field project, despite the searing sun and blinding wind storm.

A perfectly nice day in the field (if you don't mind winds that will make your hair stand straight out).

We were rewarded for all of our hard work.

For one, we made a new friend.

We also found petroglyphs that showed these radiating straight lines.

The petroglyphs also showed a hand print.

The best reward was the home-cooked meal that we were treated to by Ms. Huntsman, complete with pie.

We hope every day of our field season is just like this one (minus the wind).

 

Orientation in Ice Springs Volcanic Field

June 4th, 2012

FILLMORE, UTAH – [Guest bloggers Kevin Silver and Tricia Hall]

The alarms sounded in the early morning sun, early enough for the outside air to chill the bones. After our standard yogurt and cereal breakfast, we piled into the van and made our way to the Ice Springs volcanic field, the site of our field work for Independent Study. By chance, we met the manager of the quarry along the narrow road in a near head on collision before making our way up the winding road of the cinder cone with the manager’s warnings of careless truck drivers at the forefront of our minds. Once we arrived at the top of the cinder cone, we were able to enjoy the incredible views of the surrounding valley. The first feature we came to was the Crescent crater. As we viewed the expanse of the lava flow below us, it became quite clear at this point that trying to map the entire field would take much longer than the two short weeks that we have to work in Ice Springs.

Looking northeast from the summit of Crescent Crater.

 

After becoming oriented with the area, we made our way to Miter crater and came across extensive exposures of xenoliths. We paused for a snack and to reapply sunscreen before heading out onto the lava flows, and it was here we realized a harsh reality. The lava flows are very complex, but luckily provided better footing than the cinder of the crater slopes. Assessing the lava flows led us to the flows breaching Miter crater. The ascent back up Miter crater proved to be more challenging than expected, but we were truly independent minds working together to find flat ground. Once everybody caught their breath, we wandered back toward the van to make our way back down the cinder cone. We then made an attempt at circumnavigating the volcanic field using the rather primitive roads that were more attuned to cattle herds than cars. This feat proved to be futile as nothing less than an ATV could navigate the rough terrain we encountered. Upon our misfortune, and the near loss of our bumper, we decided to head back to camp. Along the way, we all took a nap, leaving poor Dr. Judge and Dr. Pollock to navigate our group safely back to the camp site in silence.

Tricia Hall standing in front of Miter Crater.

Once back in our accommodations, the kozy kabins, we all went our separate ways for some R&R. We each met individually with the professors to discuss our project ideas once again following our initial introduction to our field site.

Around 5:30 pm, we all piled into the van once more to scavenge for nutrients at the quality establishment known as 5 Buck Pizza. We had 4 of them. They were good. Will and Matt guzzled 8 pieces of pizza each, leaving the rest of us starving.

 

Wooster Geologist on the Blue Ridge of Virginia

June 3rd, 2012

The summer field season has started for Wooster geologists. Greg Wiles is now in southern Alaska with his students doing dendrochronology and geomorphology. Meagen Pollock and Shelley Judge are running an integrated project in west-central Utah with their students doing structural geology, geochemistry, vulcanism and petrology. Watch these pages for their reports!

As for me, I’m on a short vacation. A geologically-rich vacation, of course! My wife Gloria and I are visiting the Shenandoah region of Virginia. We started today in Shenandoah National Park, driving south down Skyline Drive along the Blue Ridge. The weather is spectacular as you can tell from the above image. This is a view near Mile 61 looking west across the Valley and Ridge Province.
The Blue Ridge Province has a bedrock made of igneous and metamorphic Grenville basement rocks up to a billion years old. The Blue Ridge itself, which runs north-south from Pennsylvania to Georgia, is mostly an eroded anticline overturned westward. Directly west is the Valley and Ridge Province. In the image above, the “A” is at the spot where the top photograph was taken. You can easily pick out the physiographic and geological provinces.

Most of the rocks exposed along Skyline Drive in Shenandoah National Park are metabasalts of the Catoctin Formation (Ediacaran, about 570 million years old). A metabasalt is a basalt that has been metamorphosed (unsurprisingly). The original basalts of the Catoctin were erupted during the rifting open of the Iapetus Ocean, a precursor of the Atlantic. Many of these eruptions were on this early seafloor, forming pillows and thick flows. The total basalts in this formation piled up in layers to almost 800 meters thick.
The metabasalt of the Catoctin has a greenish color in many places, giving it the common name “greenstone”. Veins of green minerals, primarily epidote and chlorite, run through the rock, especially in the northern part of the Blue Ridge. This greenstone is occasionally mined to produced chemical-resistant lab surfaces and facing stones.

The dramatic geology was accompanied by beautiful wildflowers. The rocks, flowers, views and weather combined to make an extraordinary day of natural history. Tomorrow we’ll explore how this geology affected human history in very direct ways.

Aquilegia canadensis (Red Columbine).

Penstemon canescens (Hairy Beardtongue).

« Prev - Next »