Wooster Geologists tramping through the brush of southern Minnesota

July 28th, 2016

1 Shop Quarry 072816Rochester, Minnesota — The middle of the summer is not the best time to do fieldwork in southern Minnesota. The thick and diverse plants make each journey to an abandoned quarry wall or roadcut a jungly adventure. It doesn’t help that some plants, like poison ivy and the abundant wild parsnip, are, shall we say, unfriendly. Ticks, so far, have been uncommon. I nevertheless go to sleep wondering if there is a tick somewhere I haven’t found, and whether that itchy spot means anything …

Today was our last day with our expert guide from the Minnesota Geological Survey (and Wooster Geology alumnus) Andrew Retzler. We visited three locations where the Decorah Formation is exposed. The top image is us on an abandoned slope of Shop Quarry near Rochester.

2 Andrew Retzler Shop QuarryAndrew is enjoying the many fossils in the Decorah at this site. Note the thin carbonate slabs that weather out of the shale.

3 Turkey Run viewTurkey Run was our second site of the day. The Decorah and lower part of the Cummingsville Formation are exposed here. We needed a machete!

4 Turkey Run 072816The students are examining the Decorah shales on the left. Andrew is on the right with his hand on the base of the Cummingsville Formation.

5 Wangs Corner 072816Wang’s Corner was our third and last stop of the day. This exposure of the Decorah was right on the side of the road, making it the easiest outcrop yet. While we worked, Nick Wiesenberg on the left made us delicious salmon and cheese cracker snacks. That was a new field trip experience for me: fine dining while collecting!

6 Team Minnesota 072816Here we are in Hernke’s Rock Quarry with the Shakopee Formation, part of the Prairie du Chien Group (Early Ordovician).

All is thus well with Team Minnesota as Andrew Retzler leaves us and we’re on our own. We have four student projects we’ll outline here over the next few days. The temperatures dropped as a front moved through, so we had a cool, drizzly day. Tomorrow we return to Iowa.

 

Team Minnesota visits the Upper Ordovician of Iowa

July 27th, 2016

1 Decorah Bruening QuarryRochester, Minnesota — Team Minnesota traveled south today to visit exposures of our three favorite formations: the Platteville Limestone, Decorah Shale, and Cummingsville Limestone. Where best to see the Decorah Shale than in Decorah, Iowa? Above the crew is scattered in the abandoned Decorah Bruening Quarry. They are walkinng on top of the Carimona Member of the Decorah, with the shaley units above topped by the Cummingsville Limestone.

2 Team with Deicke at Decorah BrueningWe began at the bottom with the Platteville and a bit of rare shade. Nikki Bell and Etienne Fang have their hands on the iconic Deicke Bentonite. A very handy time indicator, that volcanic ash deposit.

3 Andrew Decorah Cummingsville contactOur excellent guide Andrew Retzler of the Minnesota Geological Survey is examining the contact between the upper Decorah Shale and Lower Cummingsville Limestone. We found here several specimens of the “gumdrop” bryozoan Prasopora.

4 Rachel CummingsvilleRachel Wetzel gets a bit too close to the crumbly cliff of Cummingsville Limestone at the Decorah Bruening  Quarry.

5 Cummingsville limestoneWhere freshly exposed, the Cummingsville reveals itself to be a fascinating unit with alternating limestone lithologies. The darker layer here is a packstone with fine fossil debris. It is almost certainly a storm deposit.

6 Cummingsville ChondritesThis slab of Cummingsville is covered with beautiful Chondrites trace fossils.

7 Team at Golden HillIn the afternoon we returned to Minnesota and explored a very overgrown exposure of the Decorah Shale at the Golden Hill abandoned quarry along US 52 near Rochester. The main attraction here for us is the abundance of “iron ooids”, small spheres of iron oxides. Etienne Fang is studying their composition and origin for her Independent Study thesis. It’s a steep and muddy slope after a journey through head-high brush, but the bags full of samples made it worthwhile.

8 Golden Hill slabThe fossils here are gorgeous. This is the base of a crinoid calyx surrounded by brachiopod, crinoid and bryozoan debris.

It was a great day of exploration. Tomorrow we examine localities north of Rochester.

Team Minnesota Assembles!

July 26th, 2016

1 Team MN 0772616Rochester, Minnesota — The first Team Minnesota of Wooster Geologists has now gathered for its work in this beautiful state. Above from the left is Rachel Wetzel (’17), Dean Thomas (’17), Nick Wiesenberg (Geological Technician), Nikki Bell (’17) and Etienne Fang (’17). They’ve gathered from five states to pursue integrated Independent Study fieldwork in the Upper Ordovician Decorah Formation and related units. AS you can see, our first day was bright and warm. The team is in front of the headquarters of the Minnesota Geological Survey in St. Paul. It is a very earnest, hardworking place.

2 Platteville Decorah Mississippi GorgeAfter sorting out car rentals, airport arrivals, and our first lunch, we met four geologists from the Minnesota Geological Survey (MGS) and drove to an outcrop a few miles south in St. Paul along the east bank of the Mississippi River. We are looking here at the group exploring the upper portion of the Platteville Limestone and the lower part of the Decorah Shale.

3 All star castThose four geologists from the MGS are an all-star team. They included Tony Ruckel (Chief Geologist and Paleozoic Geologist), Julia Steenberg (Paleozoic Geologist), Jenn Horton (Quaternary Geologist and a Wooster Geology alumna), and Andrew Retzler (Paleozoic Geologist and another Wooster Geology alum). What a great scientific start. We learned much in just a few hours from their experiences with the Decorah Shale and associated units. Andrew will be our guide to the outcrops over the next couple of days.

4 Team MN at work 072616Examining the top of the Platteville Limestone at the Mississippi River Gorge Park site.

5 Dean Deicke Carimona aboveDean’s left hand is in a crevice where the famous Deicke Bentonite is exposed. This is a layer of altered volcanic ash from massive eruptions to the east associated with the Taconic Orogeny. These widespread ash layers make superb time lines in the rock record. Unfortunately we can’t see the actual clay because it was mined out by visiting geologists!

6 Mississippi River 072616The Mississippi River at our first outcrop. The rocks are Platteville Limestone. The Marshall Avenue Bridge is in the background.

7 Minnehaha FallsThe last stop on this brief first day tour was Minnehaha Falls. The rocks exposed are, from the base, the St. Peter Sandstone, the Glenwood Shale, and the Platteville Limestone.

After a delicious dinner in an outdoor restaurant in Minnehaha Park, we drove down to Rochester, which is our base of operations. We enjoyed meeting new friends and getting our first look at the rocks. Tomorrow we begin a systematic survey of the Decorah outcrops in southeastern Minnesota and northern Iowa.

Wooster’s Fossils of the Week: Encrusting cyanobacteria from the Upper Ordovician of the Cincinnati region

June 24th, 2016

1 pdt19598 D1253Deep in the basement of the Natural History Museum in London, Paul Taylor and I were examining cyclostome bryozoans encrusting an Upper Ordovician brachiopod with a Scanning Electron Microscope (SEM). This is one of our favorite activities, as the SEM always reveals tiny surprises about our specimens. That day the surprises were the smallest yet – fossils we had never seen before.

2 Infected brachWe were studying the dorsal exterior surface of this beat-up brachiopod from a 19th Century collection labelled “Cincinnati Group”. (Image by Harry Taylor.) We knew it was the strophomenid Rafinesquina ponderosa, and that the tiny chains of bryozoans encrusting it were of the species Corynotrypa inflata. We’ve seen this scene a thousand times. But when we positioned the SEM beam near the center of the shell where there was a brown film …

3 pdt16920 D1253… we saw that the bryozoans were themselves encrusted with little pyritic squiggles. These were new to us.

4 pdt19580 D7139In some places there were thick, intertwining mats of these squiggles. We later found these fossils on two other brachiopod specimens, both also Rafinesquina ponderosa and from 19th Century collections with no further locality or stratigraphic information.

5 pdt19578 D7139Last week Paul and I scanned these specimens again and began to put together an analysis. We believe these are fossil cyanobacteria. They are uniserial, unbranching strands of cells that range from 5 to 9 microns in length and width. Some of individual strands are up to 700 microns long and many are sinuous. The cells are uniform in size and shape along the strands; there are no apparent heterocysts. They appear very similar in form to members of the Order Oscillatoriales.

6 CyanobacteriaCyanobacteria are among the oldest forms of life, dating back at least 2.1 billion years, and they are still abundant today. The fossils are nearly identical to extant forms, as seen above (image from: http://www.hfmagazineonline.com/cyanobacteria-worlds-smallest-oldest-eyeball/).

7 pdt19599 D1253Paul made this remarkable image, at 9000x his personal record for high magnification, showing the reticulate structure preserved on some of the fossil surfaces. Note that the scale bar is just 2 microns long. These are beautiful fossils in their tiny, tiny ways.

We have not seen these cyanobacteria fossils before on shell surfaces, so we submitted an abstract describing them for the Geological Society of America annual meeting in Denver this September. We are, of course, not experts on bacteria, so we are offering our observations to the scientific community for further discussion. Here is the conclusion of our abstract —

“We suggest the cyanobacterial mats developed shortly before final burial of the brachiopod shells. Since the cyanobacteria were photosynthetic, the shells are inferred to have rested with their dorsal valve exteriors upwards in the photic zone. That Cincinnatian brachiopod shells were occupied by cyanobacteria has been previously well demonstrated by their microborings but this is the first direct evidence of surface microbial mats on the shells. The mats no doubt played a role in the paleoecology of the sclerobiont communities on the brachiopods, and they may have influenced preservation of the shell surfaces by the “death mask” effect. The pyritized cyanobacteria can be detected with a handlens by dark squiggles on the brachiopod shells, but must be confirmed with SEM. We encourage researchers to examine the surfaces of shells from the Cincinnatian and elsewhere to find additional evidence of fossilized bacterial mats.”

References:

Noffke, N., Decho, A.W. and Stoodle, P. 2013. Slime through time: the fossil record of prokaryote evolution. Palaios 28: 1-5.

Tomescu, A. M., Klymiuk, A.A., Matsunaga, K.K., Bippus, A.C. and Shelton, G.W. 2016. Microbes and the Fossil Record: Selected Topics in Paleomicrobiology. In: Their World: A Diversity of Microbial Environments (pp. 69-169). Springer International Publishing.

Vogel, K. and Brett, C.E. 2009. Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: the early history of light-related microendolithic zonation. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 1-24.

A day at the Natural History Museum in London

June 14th, 2016

1 Drawer of brachiopodsLondon, England — My first full day at The Natural History Museum in London was interesting and inspiring as always, but it did have its tedium. This drawer of Ordovician brachiopods, for example. I scanned each with my handlens in the dim lighting looking for a particular kind of encruster.

2 Drawers of brachiopodsDrawer after drawer. Saw many curious fossils, but not one example of what I was looking for. Not an uncommon experience!

3 Harry photographing 061416One of the best parts of a museum visit is meeting skilled staff. Harry Taylor is a master photographer of fossils. Paul Taylor and I took him a fossil this morning and he immediately created a superb image for our work. In my inexpert photograph above, what looks like a blast furnace behind the camera is his lighting and flash system.

4 Harry Paul photographyHarry and Paul discuss the image on screen.

5 Bryo copyHere is a small version of the final result of Harry’s artistry. The original file is 111 megabytes! This is a brachiopod (Rafinesquina ponderosa) from the Cincinnatian rocks of southern Ohio. It is encrusted with something special I’ll describe in a later post. We’ll use this high-resolution image for detailed mapping of this surface.

6 Emanuela Di Martino SEM 061416Paul and I visited our colleague Emanuela Di Martino to congratulate her on Italy’s recent win in the Euro 2016 football tournament. She is operating the Scanning Electron Microscope (SEM) Paul and I will be using in two days. I’ve sat here for many hours scanning specimens with Paul.

7 Tony Wighton cuttingPaul and I had a bryozoan we wanted to cut in half to study its interior. Tony Wighton immediately sliced it for us.

8 Tony Wighton polishingTony then gave each half a mirror finish, producing spectacular specimens that considerably enhance the value of the collections.

It was a good day at the museum. The rain stopped long enough for us to get fresh hamburgers at the nearby open market for lunch, and then we had drinks at the Victoria & Albert Museum next door. I don’t take any of this for granted!

Wooster’s Fossils of the Week: A bored Ordovician hardground from Ohio, and an introduction to a new paper on trace fossils and evolution

June 3rd, 2016

Bull Fork hdgdAbove is an image of a carbonate hardground (cemented seafloor) from the Upper Ordovician of Adams County, Ohio. It comes from the Bull Fork Formation and was recovered along State Route 136 north of Manchester, Ohio (Locality C/W-20). It is distinctive for two reasons: (1) the many external molds (impressions, more or less) of mollusk shells, including bivalves and long, narrow, straight nautiloids, and (2) its many small borings called Trypanites, a type of trace fossil we’ve seen on this blog before.
Bull Fork boringsIn this closer view we can see the shallow external molds of small bivalve shells, especially on the left side, and the many round perforations of the Trypanites borings.

The dissolved mollusk shells (from bivalves and nautiloids) were originally composed of the calcium carbonate mineral aragonite. This aragonite dissolved early on the seafloor, liberating calcium carbonate that quickly precipitated as the mineral calcite in the sediment, cementing it into a rocky seafloor (hardground) that was then bored by the animal that made Trypanites. This all happened because of the distinctive geochemistry of the ocean water at that time. High levels of carbon dioxide and a decreased Mg/Ca ratio dissolved aragonite yet enabled calcite (the more stable polymorph of calcium carbonate) to rapidly precipitate. This geochemical condition is known as a Calcite Sea, which was common in the early to middle Paleozoic, especially in the Ordovician. This is not the case in today’s marine waters in which aragonite is the primary calcium carbonate precipitate (“Aragonite Sea“). See Palmer et al. (1988) for more details on this process and the evidence for it.

I’m using this Ordovician carbonate hardground to introduce a new paper that just appeared this week in the Proceedings of the National Academy of Sciences (PNAS): “Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Ordovician Biodiversification Event“. The authors are the renowned trace fossil experts Luis Buatois and Gabriela Mángano, the ace geostatistician Ricardo Olea, and me. I’m excited about this paper because it adds to the literature new information and ideas about two major evolutionary radiations: the “explosion” of diversity in the Cambrian (which established basic body plans for most animals) and the diversification in the Ordovician (which filled in those body plans with abundant lower taxa). This is one of the few studies to look in detail at the trace fossil record of these events. Trace fossils (records of organism behavior in and on the sediment substrate) give us information about soft-bodied taxa otherwise rare in a fossil record dominated by shells, teeth and skeletons. It is also the first systematic attempt to compare the diversification of trace fossils in soft sediments and on hard substrates (like the hardground pictured above).

As for the paper itself, I hope you can read it. Here is the abstract —

Contrasts between the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE) have long been recognized. Whereas the vast majority of body plans were established as a result of the CE, taxonomic increases during the GOBE were manifested at lower taxonomic levels. Assessing changes of ichnodiversity and ichnodisparity as a result of these two evolutionary events may shed light on the dynamics of both radiations. The early Cambrian (Series 1 and 2) displayed a dramatic increase in ichnodiversity and ichnodisparity in softground communities. In contrast to this evolutionary explosion in bioturbation structures, only a few Cambrian bioerosion structures are known. After the middle to late Cambrian diversity plateau, ichnodiversity in softground communities shows a continuous increase during the Ordovician in both shallow- and deep-marine environments. This Ordovician increase in bioturbation diversity was not paralleled by an equally significant increase in ichnodisparity as it was during the CE. However, hard substrate communities were significantly different during the GOBE, with an increase in ichnodiversity and ichnodisparity. Innovations in macrobioerosion clearly lagged behind animal–substrate interactions in unconsolidated sediment. The underlying causes of this evolutionary decoupling are unclear but may have involved three interrelated factors: (i) a Middle to Late Ordovician increase in available hard substrates for bioerosion, (ii) increased predation, and (iii) higher energetic requirements for bioerosion compared with bioturbation.

Thank you to Luis Buatois for his leadership on this challenging project. I very much appreciate the way this work has placed the study of trace fossils into a critical evolutionary context.
Fig1_PNASFigure 1 from Buatois et al. (2016): “Ichnodiversity changes during the Ediacaran-Ordovician. Ichnogenera were plotted as range-through data (i.e., recording for each ichnogenus its lower and upper appearances and then extrapolating the ichnogenus presence through any intervening gap in the continuity of its record).”

References:

Buatois, L.A., Mángano, M.G., Olea, R.A. and Wilson, M.A. 2016. Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Ordovician Biodiversification Event. Proceedings of the National Academy of Sciences (in press).

Palmer, T.J., Hudson, J.D. and Wilson, M.A. 1988. Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature 335: 809-810.

Wilson, M.A. and Palmer, T.J. 2006. Patterns and processes in the Ordovician Bioerosion Revolution. Ichnos 13: 109-112.

Wooster’s Fossil of the Week: A thoroughly encrusted rugose coral from the Upper Ordovician of southeastern Indiana

April 22nd, 2016

1 Rugosan Exterior 123015It doesn’t look like much, this long lump of gray stone. With a close view you might pick up a hint of a bryozoan or two, but mostly we see rather shabby shades of grey. One of the coolest perks of being a geologist, though, is that you get to use a saw to cut rocks in half to see what’s inside. So that’s what I did with this specimen from the Whitewater Formation (Upper Ordovician) of southeastern Indiana at a site we’ve visited often.

2 Rugosan interior 123015In this cross-section we see first a long, cone-shaped fossil made of white calcite. It is the rugose coral Grewingkia canadensis, one of the most common fossils in the upper part of the Upper Ordovician. This coral in life would have stood upright like an ice cream cone, spreading the tentacles of its polyp to catch very small swimming prey (and maybe to do a bit of symbiotic photosynthesis). The polyp sat in the cup-like cavity on the expanded end of the cone. The coral evidently died on the Ordovician seafloor and toppled over to be encrusted on one side, presumably the one that faced upwards.

3 Coral Bryo Sed BryoThis is a closer view of the cross-section showing the encrustations on the rugose coral skeleton. The image is annotated below.

4 Coral Bryo Sed Bryo annotatedThe coral skeleton in the lower right was first encrusted by a trepostome bryozoan, which you can recognize by the tubes (zooecia) extending perpendicular from the substrate. This bryozoan is thickest on the upwards-facing surface of the coral, and it thins as it wraps around and then colonizes the cryptic space beneath (but not too far). This bryozoan is covered with a layer of sediment which appears to have rapidly cemented in place (a function of Calcite Sea geochemistry). The sediment then is encrusted by a another trepostome bryozoan with long zooecia and several layers.

5 Bryo Sed 123015In this closer view of the second bryozoan you can see that its base is irregular as it grew across the rough cemented sediment surface. In the middle of this view some of the bryozoan zooecia are occupied by dark spots known as brown bodies. These are likely the remains of bryozoan polypides (main parts of the individual zooids) that were sealed into their zooecia by some disturbance. In this case the whitish bit of sediment above the cluster may represent something that settled on the colony, stopping the growth of the zooecia below, and forcing those nearby to grow around it.

6 Borings 123015Moving down the coral skeleton away from its opening we come across borings drilled down through the coral skeleton (the white mass at the bottom of the image). The conical, large boring is filled with golden crystals of the mineral dolomite, which were formed long after burial. The shape of this boring is unusual. Typical borings in these corals have straight parallel sides, but this boring is cone-shaped. We’ll see if we can find more like it to get a better idea of its shape and distribution.

This week’s fossil, then, is a demonstration of the hidden wonders sometimes found in even the dullest of grey rocks!

 

Wooster’s Fossils of the Week: An encrusted and bored coral (maybe) from the Upper Ordovician of southeastern Indiana (Part II)

April 1st, 2016

6 Tetradium cavernLast week we looked at a dull gray rock found in a roadcut in southeastern Indiana near the town of Liberty. It is from the Saluda Formation (Upper Ordovician), a thin unit that was likely deposited in very shallow, lagoonal waters along the Cincinnati Arch. We know that it is primarily a platter formed by the mysterious fossil Tetradium, and that it is encrusted with a trepostome bryozoan that was infested by some sort of soft-bodied encruster on its surface, forming the trace fossil Catellocaula vallata. Now we’re examining the wonders revealed by cutting this rock in half. Above we see the surprising and spectacular geode that it is, with calcite crystals surrounding a dark cavity. Let’s see what the fossils look like when polished and magnified.

7 LongitudinalCrossTetraThe orangish, irregular patch in the lower half of the section above is the crystalline calcite near the center of the rock. The sediment-filled tubes in the top half are of the Tetradium specimen. Note that the walls of the tubes are blurry and indistinct, and that they fade and disappear into the calcite crystals below. This is apparently because the skeleton of Tetradium was made of aragonite, an unstable form of calcium carbonate. It is likely that the aragonitc, tubular skeleton of Tetradium dissolved away in the center of this encrusted mass, forming the cavity that later filled with secondary calcite crystals. The remaining tubes were apparently preserved as ghostly molds by infillings of calcitic mud that didn’t dissolve.

8 TetracrossIn this section we are cutting the Tetradium tubes perpendicularly, rather than the longitudinal cuts we saw before. The cross-sections of the tubes show a four-part symmetry, which adds to the mystery of this group. (This is where the name “Tetradium” comes from.) It has been called a chaetetid sponge (as in Termier and Termier, 1980); a “calcareous filamentous florideophyte [red] alga” (Steele-Petrovich 2009a, 2009b, 2011; she renamed it Prismostylus), and most commonly a coral of some sort (as in Wendt, 1989). I now know enough about chaetetids to say that it is not in that group. Chaetetid tubes are not aragonitic, do not show tetrameral symmetry, and have diaphragms (horizontal floors). The corals of the Ordovician are decidedly calcitic, not aragonitic, and they too have internal features in their tubes not seen here. The four-part symmetry, though, is something you see in the coral’s phylum, Cnidaria, so there is that vague resemblance. The red algal affinity strongly urged by Steele-Petrovich may be our best diagnosis for the place of Tetradium.

9 BryoTetra1On top of the tubes of Tetradium is the encrusting trepostome bryozoan. Its tubes (zooecia) are made of stable calcite, so they are well preserved compared to the aragonite tubes of Tetradium below it. Note that the bryozoan is made of two layers. One colony died or went into some sort of remission, and another of the same species grew across it. The second colony could have budded somewhere from the first colony.

10 BrownBodies122915This closer view of the bryozoan section shows details of the zooecia, including the horizontal diaphragms inside. The dark spots at the tops of the zooecia are brown bodies, the remains of polypides preserved here in clear calcite cement. (We’ve seen brown bodies before in this blog.) They likely represent some sort of traumatic event in the life of this bryozoan when this part of the colony essentially shut down and was covered with sediment.

11 Gypsumflower122915Finally, there is a mineralogy story here too! Attached to the dog-tooth calcite spar in the center of this geode is this tiny gypsum flower. The gypsum crystals are white and very delicate. The dark needles among them are mysterious. Dr. Meagen Pollock and her students will subject them to x-ray diffraction in her lab later this semester. I’ll report the results here.

It is a simple tool, the rock saw. For geologists and paleontologists, it is one of our essential instruments for discovery.

References:

Hatfield, C.B. 1968. Stratigraphy and paleoecology of the Saluda Formation (Cincinnatian) in Indiana, Ohio, and Kentucky. Geological Society of America Special Papers 95: 1-30.

Li, Q., Li, Y. and Kiessling, W. 2015. The first sphinctozoan-bearing reef from an Ordovician back-arc basin. Facies 61: 1-9.

Palmer, T.J. and Wilson, M.A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31: 939-949.

Steele‐Petrovich, H M. 2009a. The biological reconstruction of Tetradium Dana, 1846. Lethaia 42: 297-311.

Steele‐Petrovich, H M. 2009b. Biological affinity, phenotypic variation and palaeoecology of Tetradium Dana, 1846. Lethaia 42: 383-392.

Steele-Petrovich, H.M. 2011. Replacement name for Tetradium DANA, 1846. Journal of Paleontology 85: 802–803.

Termier, G. and Termier, H. 1980. Functional morphology and systematic position of tabulatomorphs. Acta Palaeontologica Polonica 25: 419-428.

Wendt, J. 1989. Tetradiidae — first evidence of aragonitic mineralogy in tabulate corals. Paläontologische Zeitschrift 63: 177–181.

 

Wooster’s Fossils of the Week: An encrusted and bored coral (maybe) from the Upper Ordovician of southeastern Indiana (Part I)

March 25th, 2016

1 TopEncrustedTetradiumI found this lump of a gray rock in southeastern Indiana along a highway near the town of Liberty. It is from the Saluda Formation (Upper Ordovician), a thin unit that was likely deposited in very shallow, lagoonal waters along the Cincinnati Arch. It is not especially notable in this view. I intend to show you the wonders that can be revealed in such dull rocks by simply sawing them in half. First, though, let’s have a look at the outside. Inn the view above you can see on the left side a large trepostome bryozoan with some irregular holes in it. We’ll come back to that.

2 BaseEncrustedTetradiumFlipping the rock over we find that most of it is a fibrous fossil shaped like a dinner plate with limestone matrix and encrusting bryozoans covering most of the center.

3 CloserTubesTetraA closer view of the fibrous part shows thousands of thin tubes radiating out from the center of the plate. This is the Ordovician fossil known as Tetradium. It is strange and mysterious enough that we will use the next Fossil of the Week blog post to describe it. It has been called a chaetetid sponge (as in Termier and Termier, 1980); a “calcareous filamentous florideophyte alga” (Steele-Petrovich 2009a, 2009b, 2011; she renamed it Prismostylus), and most commonly a coral of some sort (Wendt, 1989). Interesting range of options! We’ll explore later.

4 Catellocaula122915Now, back to the trepostome bryozoan visible on the top surface. There are three kinds of holes on this specimen. The smallest are the zooecia of the bryozoan itself, each of which would have hosted a zooid (a bryozoan individual). They are the background texture of the fossil. The large holes above are a bioclaustration structure that Time Palmer and I named in 1988 as Catellocaula vallata (little chain of walled  pits). It is explained thoroughly in one of the early Fossil of the Week posts. Basically they are pits formed when the bryozoan grew up and around some sort of soft-bodied colonial organism sitting on top of the surface, forming these embedment structures connected together by tunnels at their bases.

5 Trypanites122915A third kind of hole in this bryozoan is a boring cut down into its skeleton. These are the trace fossil Trypanites, formed when some kind of filter-feeding worm bored straight into the calcite zoarium (colonial skeleton) to make a protective home, as many polychaete worms do today.

Now let’s cut this stone in half —

6 Tetradium cavernInside we find a wonderful cavern of crystals — a geode! The crystals are mostly calcite, with dog-tooth spar lining the cavity and blocky spar replacing large parts of the Tetradium skeleton. There’s a story here, and it will be told in the next Fossil of the Week post!

References:

Hatfield, C.B. 1968. Stratigraphy and paleoecology of the Saluda Formation (Cincinnatian) in Indiana, Ohio, and Kentucky. Geological Society of America Special Papers 95: 1-30.

Li, Q., Li, Y. and Kiessling, W. 2015. The first sphinctozoan-bearing reef from an Ordovician back-arc basin. Facies 61: 1-9.

Palmer, T.J. and Wilson, M.A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31: 939-949.

Steele‐Petrovich, H M. 2009a. The biological reconstruction of Tetradium Dana, 1846. Lethaia 42: 297-311.

Steele‐Petrovich, H M. 2009b. Biological affinity, phenotypic variation and palaeoecology of Tetradium Dana, 1846. Lethaia 42: 383-392.

Steele-Petrovich, H.M. 2011. Replacement name for Tetradium DANA, 1846. Journal of Paleontology 85: 802–803.

Termier, G. and Termier, H. 1980. Functional morphology and systematic position of tabulatomorphs. Acta Palaeontologica Polonica 25: 419-428.

Wendt, J. 1989. Tetradiidae — first evidence of aragonitic mineralogy in tabulate corals. Paläontologische Zeitschrift 63: 177–181.

Wooster’s Pseudofossils of the Week: Shatter cones from southern Ohio

March 4th, 2016

Real shatter cones 585This brief post is a correction of a previous entry. Last year I showed what I thought were shatter cones collected many years ago in Adams County, Ohio, by the late Professor Frank L. Koucky of The College of Wooster. James Chesire commented on the post and said it was more likely the specimens were cone-in-cone structures produced by burial diagenesis not bolide impacts. When he sent me the photo above of real shatter cones from the Serpent Mound impact region in southern Ohio, I knew he was correct. Shatter cones have distinctive radiating, longitudinal fractures not seen in similar conical structures in limestones. The above shatter cones are in an unknown Ordovician limestone.

Both shatter cones and cone-in-cone structures are nevertheless pseudofossils in that they are both sometimes confused with organic structures like corals and chaetetids. I shall never mix them up again! Thanks for the correction, James.

References:

Carlton, R.W., Koeberl, C., Baranoski, M.T. and Schumacher, G.A. 1998. Discovery of microscopic evidence for shock metamorphism at the Serpent Mound structure, south-central Ohio: confirmation of an origin by impact. Earth and Planetary Science Letters 162: 177-185.

Dietz, R.S. 1959. Shatter cones in cryptoexplosion structures (meteorite impact?). The Journal of Geology 67: 496-505.

Sagy, A., Fineberg, J. and Reches, Z. 2004. Shatter cones: Branched, rapid fractures formed by shock impact. Journal of Geophysical Research 109: B10209.

Shaub, B.M. 1937. The origin of cone-in-cone and its bearing on the origin of concretions and septaria. American Journal of Science 203: 331-344.

« Prev - Next »