Last day of work at the Natural History Museum, and some special visitors

June 25th, 2014

pdt16846 copyLONDON, ENGLAND — I know it is an acquired taste, and way too esoteric, but I think the above scanning electron micrograph is beautiful. This is an undescribed species of the cyclostome bryozoan Corynotrypa from the Upper Ordovician Bromide Formation of Oklahoma. There are all sorts of juicy details in this image that tell us about the growth and development of this extinct colonial organism, its paleoecology, and even its evolutionary relationships. It is also just plain exquisite. Paul and I had a productive and enjoyable time scanning this and several other Ordovician bryozoan specimens in our exploration of the early cyclostomes.

Paul and I stumbled upon something very surprising in our scanning this morning. We think it is potentially significant. Sorry for the tease, but we’re not ready to announce it yet. I just want to say again that we had a very good day of science!

Davis family 062514This afternoon we had great visitors to the Natural History Museum in London and its behind-the-scenes collections. From the left is Hudson Davis, his grandfather the prominent structural geologist George Davis (Wooster ’64), another grandson named, curiously, George Davis, and Merrily Davis. Paul (on the far right) gave all of us an excellent tour of the museum, including special collections and an emphasis on the awesome bryozoans. Paul and I were very impressed at how well prepared the Davis family was for this experience. They had excellent questions and a deep appreciation for natural history. It was also good to see a bit of Wooster here!

Photo by George Davis.

Photo by George Davis.

Wooster’s Fossil of the Week: A scolecodont from the Upper Ordovician of the Cincinnati region

May 4th, 2014

Cincinnatian scolecodontThis tiny but fearsome jaw is known as a scolecodont, and they are fairly common in the Cincinnatian rocks (Upper Ordovician) in the tri-state area of Ohio, Kentucky and Indiana. The label on this particular specimen does not indicate the exact locality or stratigraphic unit, but it does give a taxonomic name: “Nereidavus varians Grinnell 1877″. More on that below.

Scolecodonts are the jaws of extinct polychaete annelid worms. They are known from the Cambrian right through the Recent, so we’re pretty sure what their functions were: grabbing prey and pulling it into the gullet of the worm. They are made of a very tough chitin (an organic material much like our fingernails) and survive well the vicissitudes of fossilization. I ran across them often when I studied conodonts, which they superficially resemble.

Polychaete mouthThe Telegraph, of all places, has some amazing SEM images of the scary end of living jawed polychaetes, one of which is shown above. (I think they colored it to look like it has blood on its teeth.) Our Ordovician jaw easily fits into this functional model.

For much more on scolecodonts, Olle Hints has a superb website devoted just to these critters, and Rich Fuchs has a very useful page on the Cincinnatian varieties.

Now as for the name of our specimen, it appears that the taxonomy of Ordovician scolecodonts is in a bit of disarray. Nereidavus Grinnell, 1877, is, according to Bergman (1991) and Eriksson (1999), a nomen dubium (dubious name) because the holotype (single primary type specimen) of the type species is lost. That specimen was from Cincinnatian strata, then referred to as “Lower Silurian”. The paratype (sort of a spare type specimen) is N. varians, the same name on the label of our specimen. Eriksson considered that species to be in the genus Ramphoprion Kielan-Jaworowska, 1962. A true diagnosis of our specimen would involve extracting it from the matrix and looking at it its dorsal (oral) surface, but that’s not going to happen. I’m plenty happy just leaving this fossil as Ramphoprion sp.

Kielan-JaworowskaThe paleontologist who named the scolecodont genus Ramphoprion is the famous and incredibly accomplished Zofia Kielan-Jaworowska (above). She is best known for her pioneering work on dinosaur-bearing deposits in Mongolia in the 1960s, but she has worked on many fossil groups from trilobites to mammals. Kielan-Jaworowska (born in 1925) received her Masters Degree in zoology and a doctorate in paleontology (aren’t many of those now) at Warsaw University. She became a professor there and was later the first woman to serve on the executive committee of the International Union of Geological Sciences. I read her 1974 book Hunting for Dinosaurs in college as an adventure tale with a strong narrative framework of science. It was inspirational, and it convinced me that paleontology was the coolest science.

References:

Bergman, C F. 1991. Revision of some Silurian paulinitid scolecodonts from western New York. Journal of Paleontology 65: 248–254.

Eriksson, M. 1999. Taxonomic discussion of the scolecodont genera Nereidavus Grinnell, 1877, and Protarabellites Stauffer, 1933 (Annelida: Polychaeta). Journal of Paleontology 73: 403-406.

Eriksson, M. and Bergman, C.F. 2003. Late Ordovician jawed polychaete faunas of the type Cincinnatian Region, U.S.A. Journal of Paleontology 77: 509-523.

Grinnell, G.B. 1877. Notice of a new genus of annelids from the Lower Silurian. American Journal of Science and Arts 14: 229–230.

Hints, O. and Eriksson, M.E. 2007. Diversification and biogeography of scolecodont-bearing polychaetes in the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 95-114.

Kielan-Jaworowska, Z. 1962. New Ordovician genera of polychaete jaw apparatuses. Acta Palaeontologica Polonica 7: 291-325.

Wooster’s Fossil of the Week: Thoroughly encrusted brachiopod from the Upper Ordovician of Indiana

March 30th, 2014

1 Rafinesquina ponderosa (Hall) ventralLast week was an intensely bored Upper Ordovician bryozoan, so it seems only fair to have a thoroughly encrusted Upper Ordovician brachiopod next. The above is, although you would hardly know it, the ventral valve exterior of a common strophomenid Rafinesquina ponderosa from the Whitewater Formation exposed just south of Richmond, Indiana (locality C/W-148). I collected it earlier this month on a trip with Coleman Fitch (’15).
2 Rafinesquina ponderosa (Hall) dorsalThis is the other side of the specimen. We are looking at the dorsal valve exterior. Enough of the brachiopod shows through the encrusters that we can identify it. Note that both valves are in place, so we say this brachiopod is articulated. Usually after death brachiopod valves become disarticulated, so the articulation here may indicate that the organism had been quickly buried. This brachiopod is concavo-convex, meaning that the exterior of the dorsal valve is concave and the exterior of the ventral valve is convex.
3 Protaraea 032314Returning to the ventral valve, this is a close-up of the encruster that takes up its entire exterior surface. It is the colonial heliolitid coral Protaraea richmondensis Foerste, 1909. (Note the species name and that it was collected just outside Richmond, Indiana.) This thin coral is a common encruster in the Upper Ordovician. Usually it is a smaller patch on a shell. This is the most developed I’ve seen the species. The holes, called corallites, held the individual polyps.
4 Bryo on Protaraea 032314The encrusting coral has an encruster on top of it. This is a trepostome bryozoan, which you can identify by the tiny little holes (zooecia) that held the individuals (zooids). The patch of coral it is occupying must have been dead when the bryozoan larva landed and began to bud.
5 Trepostome 032314Now we’re returning to the concave dorsal valve with its very different set of encrusters. This is a close-up of another kind of trepostome bryozoan, this one with protruding bumps called monticules. They may have functioned as “exhalant current chimneys”, meaning that they may have helped channel feeding currents away from the surface after they passed through the tentacular lophophores of the bryozoan zooids. For our purposes, this is a feature that distinguishes this bryozoan species from the one on the ventral valve.
6 Cuffeyella 032314There is a third, very different bryozoan on the dorsal valve. This blobby, ramifying form is a well-developed specimen of Cuffeyella arachnoidea (Hall, 1847). It is again a common encruster in the Upper Ordovician, but not usually so thick.
7 Cuffeyella on hinge 032314If we look closely at the hinge of the brachiopod on the dorsal side, we can see a much smaller C. arachnoidea spreading on the ventral valve.
8 Encrusted edge 032314Finally, this is a side view of the brachiopod with the ventral valve above and the dorsal valve below. We’re looking at the junction of the articulated valves, the commissure. For the entire extent of the commissure, the encrusting coral grows to the edge of the ventral valve and no further. This is a strong indication that the brachiopod was alive when the coral was growing on it. The brachiopod needed to keep that margin clear for its own feeding.

The paleoecological implications here are that the coral was alive at the same time as the brachiopod. This means that the convex exterior surface of the ventral valve was upwards for the living brachiopod. The concave exterior surface of the dorsal valve faced downwards. The coral and bryozoan encrusting the top of the living brachiopod were exposed to the open sea; the bryozoans encrusting the undersurface of the living brachiopod were encrusting a cryptic space. We are thus likely seeing the living relationships between the encrusters and the brachiopod — this encrustation took place during the life of the brachiopod.

Further, this demonstrates that this concavo-convex strophomenid brachiopod was living with the convex side up. This has been a controversy for decades in the rarefied world of brachiopod paleoecology. This tiny bit of evidence, combined with some thorough recent studies (see Dattilo et al., 2009; Plotnick et al., 2013), strengthens the case for a convex-up orientation. Back when I was a student these would be fighting words!

References:

Alexander, R.R. and Scharpf, C.D. 1990. Epizoans on Late Ordovician brachiopods from southeastern Indiana. Historical Biology 4: 179-202.

Dattilo, B.F., Meyer, D.L., Dewing, K. and Gaynor, M.R. 2009. Escape traces associated with Rafinesquina alternata, an Upper Ordovician strophomenid brachiopod from the Cincinnati Arch Region. Palaios 24: 578-590.

Foerste, A.F. 1909. Preliminary notes on Cincinnatian fossils. Denison University, Scientific Laboratories, Bulletin 14: 208-231.

Mõtus, M.-A. and Zaika, Y. 2012. The oldest heliolitids from the early Katian of the East Baltic region. GFF 134: 225-234.

Ospanova, N.K. 2010. Remarks on the classification system of the Heliolitida. Palaeoworld 19: 268–277.

Plotnick, R.E., Dattilo, B.F., Piquard, D., Bauer, J. and Corrie, J. 2013. The orientation of strophomenid brachiopods on soft substrates. Journal of Paleontology 87: 818-825.

Wooster’s Fossil of the Week: Intensely bored bryozoan from the Upper Ordovician of Kentucky

March 23rd, 2014

Bored Bryo 1 585Yes, yes, I’ve heard ALL the jokes about being bored, and even intensely bored. I learn to deal with it. This week we continue to highlight fossils collected during our productive expedition to the Upper Ordovician (Cincinnatian) of Indiana (with Coleman Fitch ’15) and Kentucky (with William Harrison ’15). Last week was Coleman’s turn; this week it is William’s.

The beautiful fan-like bifoliate (two-sided) trepostome bryozoan above was collected from the lower part of the Grant Lake Formation (“Bellevue Limestone”) at our locality C/W-152 along the Idlewild Bypass (KY-8) in Boone County, Kentucky (N 39.081120°, W 84.792434°). It is in the Maysvillian Stage and so below the Richmondian where Coleman is getting most of his specimens. I’ve labeled it to show: A, additional bryozoans encrusting this bryozoan; B, a very bored section; C, a less bored surface showing the original tiny zooecia, monticules, and a few larger borings.
Bored Bryo 2 585The other side of this bryozoan is more uniform. It has an even distribution of small borings and no encrusters. This likely means that at some point after the death of the bryozoan and subsequent bioerosion this side was placed down in the mud while the exposed opposite side was encrusted.
Encruster Bored Bryo 031314_585A closer view of the upwards-facing side (with the encrusting bryozoan at the top) shows just how intense the boring was prior to encrustation. Some of the borings are close to overlapping. The encrusting bryozoan has its own borings, but far fewer and significantly larger.
Close borings 031314_585In this close view of the downwards-facing side we see lots of the small borings. Some are star-shaped if they punched through the junction of multiple zooecia. Note that these borings are rather evenly spread and seem to have about the same external morphology and and erosion. Likely they were all produced about the same time. It must have been a crowded neighborhood when all those boring creatures were home.

The questions that are provoked by this specimen are: (1) Were there any borings produced while the host bryozoan was still alive? (We may find elements of bioclaustration with some holes); (2) Why are zones B and C in the top image so different in the amount of bioerosion? Could zone C have still been alive at the time and resisted most bioeroders? Maybe zone C was covered by sediment? (But the margin is very irregular); (3) Why are the later encrusting bryozoans (zone A) so much less bioeroded?; (4) How do we classify such tiny pits that are between microborings and macroborings in size? (Trypanites is becoming a very large category) (5) What kind of organism made so many small pits? Were they filter-feeders as we always say, or was something else going on? (Sectioning specimens like this may reveal some internal connections between the pits.)

William has plenty of fun work ahead of him!

References:

Boardman, R.S. and Utgaard, J. 1966. A revision of the Ordovician bryozoan genera Monticulipora, Peronopora, Heterotrypa, and Dekayia. Journal of Paleontology 40: 1082-1108

Bromley, R.G. 1972. On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläontologische Zeitschrift 46: 93–98.

Erickson, J.M. and Waugh, D.A. 2002. Colony morphologies and missed opportunities during the Cincinnatian (Late Ordovician) bryozoan radiation: examples from Heterotrypa frondosa and Monticulipora mammulata. Proceedings of the 12th International Conference of the International Bryozoology Association. Swets and Zeitlinger, Lisse; pp. 101-107..

Kobluk, D.R. and Nemcsok, S. 1982. The macroboring ichnofossil Trypanites in colonies of the Middle Ordovician bryozoan Prasopora: Population behaviour and reaction to environmental influences. Canadian Journal of Earth Sciences 19: 679-688.

Taylor, P.D. and Wilson. M.A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62 (1-2): 1–103.

Vogel, K. 1993. Bioeroders in fossil reefs. Facies 28: 109-113.

Wilson, M.A. and Palmer, T.J. 2006. Patterns and processes in the Ordovician Bioerosion Revolution. Ichnos 13: 109–112.

Wooster’s Fossil of the Week: Bryozoan bored and bryozoan boring in the Upper Ordovician of Indiana

March 16th, 2014

Bored Bryo on Brach top 585This week and next we will highlight fossils collected during our brief and successful expedition to the Upper Ordovician (Cincinnatian) of Indiana (with Coleman Fitch ’15) and Kentucky (with William Harrison ’15). We found what we needed to pursue some very specific topics.

Above is a trepostome bryozoan collected from the Liberty Formation (we should be calling it the Dillsboro Formation in Indiana; our locality C/W-149) on IN-101 in southeastern Indiana (N 39.48134°, W84.94843°). You can see the regular network of tiny little holes representing the zooecia (zooid-bearing tubes) of the calcitic zoarium (colony) of the bryozoan. The larger, irregular holes (still pretty small!) are borings cut by worm-like organisms into the bryozoan skeleton shortly after the death of the colony.
Bored Bryo on Brach bottom 585Flipping the specimen over we see the most interesting parts. On the left is a remnant of the original calcitic strophomenid brachiopod shell that was encrusted by the trepostome bryozoan. On the right the shell has broken away, exposing the encrusting surface of the trepostome. We are thus looking here at the inside of a brachiopod valve and the underside of the bryozoan that encrusted it.

This is just what we hoped to find for Coleman’s project on interpreting half-borings in brachiopod shell exteriors. This specimen demonstrates two crucial events after encrustation: First, the borings in the bryozoan extended down to the brachiopod shell and turned sideways to mine along the shell/bryozoan junction (note half-borings in the bryozoan base on the right), and second, the bryozoan broke mostly free of the brachiopod shell, with only a bit remaining on the left. Somewhere there is or was a fragment of that brachiopod with an exterior showing half-borings and no bryozoan encrustation. Thus a brachiopod without bryozoan encrusters may have actually been encrusted at some point, but the bryozoans were later detached. We’ve added a bit to the uncertainty of the encrusting fossil record — even calcitic skeletal evidence on this small scale can go missing. We’ve also started on a good story about the behavior of the tiny critters that bored into this shelly complex.
Ctenostome closer 031314_585A bonus in this specimen can be seen in this closer view of that brachiopod shell interior above. That branching network is a complex ctenostome bryozoan boring called Ropalonaria. This is a particularly well developed specimen with thicker, shorter zooids than I’ve seen before. This kind of boring is the subject of a previous Fossil of the Week entry.

Coleman has a great start on his Independent Study project with specimens like these. He has a lot of sectioning and adequate peeling ahead of him!

References:

Brett, C.E., Smrecak, T., Parsons-Hubbard, K. and Walker, S. 2012. Marine sclerobiofacies: Encrusting and endolithic communities on shells through time and space. In: Talent, J.A. (ed.) Earth and Life, International Year of Planet Earth, p. 129-157. Springer.

Pohowsky, R.A. 1978. The boring ctenostomate Bryozoa: taxonomy and paleobiology based on cavities in calcareous substrata. Bulletins of American Paleontology 73(301): 192 p.

Smrecak, T.A. and Brett, C.E. 2008. Discerning patterns in epibiont distribution across a Late Ordovician (Cincinnatian) depth gradient. Geological Society of America Abstracts with Programs 40:18.

Wilson, M.A., Dennison-Budak, C.W. and Bowen, J.C. 2006. Half-borings and missing encrusters on brachiopods in the Upper Ordovician: Implications for the paleoecological analysis of sclerobionts. Geological Society of America Abstracts with Programs 38:514.

Ordovician bioclaustration project begins

March 10th, 2014

Bellevue outcrop 031014FLORENCE, KENTUCKY–Today it was William Harrison’s turn to collect specimens for his Independent Study project. He’ll be working a full year on what he’s putting in these bags before he turns in his thesis. William’s project is an interpretation of the processes that led to bioclaustration pits in Upper Ordovician bryozoans, along with larger questions of bioerosion of trepostome bryozoans. We found some gorgeous specimens at the outcrop above.

William is collecting from what used to be called the Bellevue Limestone, a Maysvillian unit between the Fairmount and Corryville Formations. Now it is best known as the lower part of the Grant Lake Formation. The rocks represent shallow water deposits, much like the Whitewater Formation Coleman was working in yesterday, so it is loaded with eroded and encrusted brachiopods and bryozoans. This is Locality C/W-152 in our system along the Idlewild Bypass (KY-8) in Boone County, Kentucky (N 39.081120°, W 84.792434°).

William 031014William was particularly adept at finding large bryozoan zoaria (colonies), most of which were riddled with borings. He is here holding a specimen that in life would have been erect on the sea floor like a fan with feeding zooids on each side. You may be able to make out the many little bumps or monticules on its surface.

Guess who our neighbor was during our exploration of this outcrop?

Creation Museum 031014Yes, the irony is deep. “Billions of dead things” indeed, Mr. Ham!

Later that day we collected a few bored and bioclaustrating bryozoans from an exposure of the Kope Formation at Orphanage Road to the east (N 39.02984°, W 84.54121°). We have plenty of specimens to keep both William and Coleman busy, and already some ideas for poster presentations.

Just to show the human effect of sampling and collecting, our first stop of the day was entirely unsuccessful. We visited one of my first localities, an exposure of the Kope Formation at the confluence of the Ohio River and Gunpowder Creek in Boone County, Kentucky (C/W-7; N 38.90428°, W 84.79779°). It was here in 1984 that my wife Gloria and I found hundreds of fantastic encrusted cobbles, many with gorgeous edrioasteroids and thick accumulations of bryozoans. These were for a very brief moment famous in the local collecting community. Within a few months they were all gone. William and I were there now 30 years later hoping a new cobble or two might have eroded out, but we found nothing. A future researcher would have no idea such cobbles were present, except for the one paper in the literature.

 

Ordovician bioerosion and encrustation project begins

March 9th, 2014

Coleman 030914RICHMOND, INDIANA–Meet Coleman Fitch (’15) standing on the iconic outcrop of the Whitewater Formation (Upper Ordovician) on Route 27 about a mile south of Richmond (C/W-148; N 39.78722°, W 84.90166° — which has a nice Google Maps street view). This was his first day of fieldwork for his study of the complex relationship between borings and encrusters on brachiopods and mollusks. Note that Coleman has manfully taken off one glove for fossil collection. Despite the sun, we were freezing for science. Later in the day we collected from a warmer exposure of the Liberty Formation (Locality C/W-149) on IN-101 (N 39.48134°, W84.94843°).

Our collecting was very successful today. We found numerous examples of “half-borings” on trepostome bryozoan attachment surfaces, and many other curious fossils showing an interplay of early diagenesis (especially aragonite dissolution and calcite precipitation) and biotic processes.

Richmond specimen 030914Above is an example of the fun and complex fossils at the Whitewater locality. What processes do you think this specimen represents?

Tomorrow I meet William Harrison (’15) in northern Kentucky to search for bored bryozoans and bioclaustrations. It promises to be much warmer down there!

Wooster paleontologists begin a new field season

March 8th, 2014

Southgate 030814RICHMOND, INDIANA–This is the first day of what upper midwesterners hilariously call “spring break”, so it is time to get some students in the field. I can’t say this is the first Wooster geology fieldwork of the year because that crazy Greg Wiles lab was out on the ice in deepest January. I spent today in eastern Indiana exploring field sites for a new generation of Independent Study students. Tomorrow and Monday Coleman Fitch (’15) and William Harrison (’15) will be joining me to collect specimens for their I.S. projects on Cincinnatian (Upper Ordovician) fossils. We’ll highlight their work in the next couple of days.

Above is one of the best known fossil sites in southeastern Indiana. It is the Southgate Hill section (sometimes called the St. Leon roadcut) at N 39.33899°, W 84.95287°. Exposed here are (from bottom to top) the Oregonia, Waynesville, Liberty, Whitewater and Saluda units of the Cincinnatian Group. It is a rich site — and incredibly muddy today. I suppose I’ll take mud over ice. Note the blue sky. By the end of the day it was as gray as the rocks, making the search for tiny fossil details difficult. Tomorrow promises to be much sunnier. Brach Slab 030814The brachiopods at the Southgate exposure are incredibly abundant and well preserved. These are strophomenids. Crinoids Bryozoans 030814Bryozoans (the twiggy bits) and crinoids (the circular fossils with star-shaped central holes). Can’t go wrong with this combination. More tomorrow and Monday as Coleman and William get to work. Meanwhile I’m wondering how I managed to get a motel room right next to an active railway …

Wooster’s Fossils of the Week: Bioclaustration-boring structures in bryozoans from the Upper Ordovician of the Cincinnati region

February 9th, 2014

Chimneys 149aAnother bioerosion mystery from those fascinating Upper Ordovician rocks around Cincinnati. Above you see a flat, bifoliate trepostome bryozoan (probably Peronopora) with pock holes scattered across its surface. At first you may think, after reading so many blog posts here, that these are again the simple cylindrical boring Trypanites, but then you note that they are shallow and have raised rims so that they look like little meteorite craters. These holes thus represent tiny organisms on the bryozoan surface while it was alive. The bryozoan grew around these infesters, producing the reaction tissue of the rims. This is a kind of preservation called bioclaustration (literally, “walled-in life” from the same root in claustrophobia and cloisters). The specimen is from locality C/W-149 (Liberty Formation near Brookville, Franklin County, Indiana; 39º 28.847′ N, 84º 56.941′ W).
Chimneys 153aThis is another trepostome bryozoan with these rimmed pits. It is from locality C/W-153 (Bull Fork Formation near Maysville, Mason County, Kentucky; 38º 35.111′ N, 083º 42.094′ W). The pits are more numerous and have more pronounced reaction rims.
Chimneys 153bA closer view. One of the interesting questions is whether these pits are also borings. Did they cut down into the bryozoan skeleton at the same time it was growing up around them? We should be able to answer that by making a cross-section through the pits to see what their bases look like. The bryozoan walls should be either cut or entire.
Chimneys 153cThis is an older image I made back in the days of film to show the density of the rimmed pits in the same bryozoan as above. If we assume that the pit-maker was a filter-feeding organism, how did it affect the nutrient intake of the host bryozoan? Maybe the infester had a larger feeding apparatus and took a larger size fraction of the suspended food? (This could be a project where we apply aerosol filtration theory.)  Maybe the bryozoan suffered from a cut in its usual supply of food and had a stunted colony as a result? These are questions my students and I plan to pursue this summer and next year.

It is good to get back to the glorious Cincinnatian!

References:

Ernst, A., Taylor, P.D. and Bohatý, J. 2014. A new Middle Devonian cystoporate bryozoan from Germany containing a
new symbiont bioclaustration. Acta Palaeontologica Polonica 59: 173–183.

Kammer, T.W. 1985. Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology 59: 551-560.

Palmer, T.J. and Wilson, M.A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31: 939-949.

Rubinstein, D.I. and Koehl, M.A.R. 1977. The mechanisms of filter feeding: some theoretical considerations. American Naturalist 111: 981-994.

Tapanila, L. 2005. Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia 38: 89-99.

Taylor, P.D. and Voigt, E. 2006. Symbiont bioclaustrations in Cretaceous cyclostome bryozoans. Courier Forschungsinstitut Senckenberg 257: 131-136.

Wooster’s Fossils of the Week: Mysterious borings in brachiopods from the Upper Ordovician of the Cincinnati region

February 2nd, 2014

Half borings 152a1Above is a well-used brachiopod from the Upper Ordovician of northern Kentucky (C/W-152; Petersburg-Bullittsville Road, Boone County; Bellevue Member of the Grant Lake Formation). It experienced several events on the ancient seafloor during its short time of exposure. Let’s put a few labels on it and discuss:

Half borings 152a2Our main topic will be those strange ditch-like borings (A) cut across into the exterior of this brachiopod shell. This is an example of bioerosion, or the removal of hard substrate (the calcitic shell in this case) by organisms. These structures were likely created by worm-like filter-feeders. The shell also has a nice trepostome bryozoan (B) encrusting it (and partially overlapping the borings) and the heliolitid coral Protaraea richmondensis (C), which is distinguished by tiny star-like corallites. The borings are what we need to make sense of in this tableau. Here’s another set on another brachiopod:

Half borings 152bThis closer view of a brachiopod shell exterior from the same locality shows two of these horizontal borings. The mystery is why we see only half of the boring. These are apparently cylindrical borings of the Trypanites variety, but they should be enclosed on all sides as tubes. Why is half missing? It is as if the roofs have been removed. I think that is just what happened.

Half borings 152cThis encrusted and bored brachiopod, again from the same locality, gives us clues as to what likely happened. Here we see an encrusting bryozoan and those borings together. The borings cut through the bryozoan down into the brachiopod shell. Could it be that encrusting bryozoans provided the other half of the borings?

BoringXsectHere’s a test of that idea. Above is a cross-section through the boundary between an encrusting bryozoan (above) and a brachiopod shell (below). It was made by cutting through the specimen, polishing it, and then making an acetate peel. The bryozoan shows the modular nature of its colonial skeleton, and the brachiopod displays its laminar shell structure. The two round features are sediment-filled borings running perpendicular to the plane of the section. The boring on the left is completely within the brachiopod shell; the one on the right is cut along the interface of the bryozoan and brachioopod. Remove the bryozoan and we would have a half-boring as discussed above.

Half borings 152eIf that postulate is true, it means that the encrusting byozoans must have been removed from the brachiopod shells, taking the other halves of the borings with them. We should thus find bryozoans that “popped” off the shells with the equivalent half-borings on their undersides. You know where this is going. The bryozoan above (same locality) shows its upper surface. Note that there are a scattering of tiny borings punched into it.

Half borings 152fThis is the underside of the bryozoan. We are looking at its flat attachment surface. It was fixed to a shell of some kind (I can’t tell what type) and became detached from it. You see the half-borings along with vertical borings drilled parallel to the attachment surface. It appears that small organisms drilled into the bryozoan zoarium (colonial skeleton) on its upper surface, penetrated down to the boundary with the brachiopod shell, and then turned 90° and excavated along the boundary between brachiopod and bryozoan. This makes sense if they were creating a dwelling tube (Domichnia) that they would want surrounded by shell. Punching straight through the bryozoan and brachiopod would leave them in a tube without a base. What would this look like from the inside of the brachiopod shell?

Half borings 152dThis time we’re looking at the interior of a brachiopod shell (same location) that has been exfoliated (some shell layers have been removed). The horizontal borings are visible running parallel to the shell.

Horizontal in bivalveThis view of an encrusted bivalve shell may help with the concept. In the top half you see an encrusting bryozoan. In the bottom you see bivalve shell exposed where the bryozoan has been broken away. Cutting into that shell are the horizontal borings. Their “roofs” were in the now-missing parts of the bryozoan.

There are two conclusions from this hypothesis: (1) There was a group of borers who drilled to this interface between bryozoan and brachiopod skeleton, detected the difference in skeleton type, and then drilled horizontally to maintain the integrity of their tubes; (2) the bryozoans were cemented to the brachiopods firmly enough that the borers could mine along the interface, but later some bryozoan encrusters were removed, leaving no trace of their attachment save the half-bored brachiopod shell. This latter conclusion is disturbing. A tacit assumption of workers on the sclerobionts (hard-substrate dwellers) of brachiopods and other calcitic skeletons is that the calcitic bryozoans cemented onto them so firmly that they could not be dislodged. We could thus record how many shells are encrusted and not encrusted to derive paleoecological data about exposure time, shell orientations and the like. But if the robust bryozoans could just come off, maybe that data must be treated with more caution? After all, bryozoans that were removed from unbored brachiopods could leave no trace at all of their former residence.

Two students and I presented these ideas at a Geological Society of America meeting eight years ago (Wilson et al., 2006), but we never returned to the questions for a full study. Now a new generation of students and I have started a project on this particular phenomenon of sclerobiology. It will involve collecting more examples and carefully dissecting them to plot out the relationship between the borings and their skeletal substrates. We also want to assess the impact these observations may have on encruster studies. Watch this space a year from now!

References:

Brett, C.E., Smrecak, T., Hubbard, K.P. and Walker, S. 2012. Marine sclerobiofacies: Encrusting and endolithic communities on shells through time and space, p. 129-157. In: Talent, J.A. (ed.), Earth and Life; Springer Netherlands.

Smrecak, T.A. and Brett, C.E. 2008. Discerning patterns in epibiont distribution across a Late Ordovician (Cincinnatian) depth gradient. Geological Society of America Abstracts with Programs 40:18.

Wilson, M.A., Dennison-Budak, C.W. and Bowen, J.C. 2006. Half-borings and missing encrusters on brachiopods in the Upper Ordovician: Implications for the paleoecological analysis of sclerobionts. Geological Society of America Abstracts with Programs 38:514.

« Prev - Next »