Wooster’s Fossils of the Week: Strophomenid brachiopods from the Upper Ordovician of southern Ohio

March 24th, 2017

Usually I find fossils in the field or lab and then craft a Fossil of the Week entry around them. This time, though, I started with a paper and then searched for fossils to illustrate it. I found this recent paper very well done:

Bauer, J.E. and Stigall, A.L. 2016. A combined morphometric and phylogenetic revision of the Late Ordovician brachiopod genera Eochonetes and Thaerodonta. Journal of Paleontology 90: 888-909.

It does classic systematics on a group of brachiopods with the modern tools of morphometric and phylogenetic analyses. Its conclusions are direct and convincing: The genus Thaerodonta is synonymous with Eochonetes, and a variety of species are shifted around, solving problems that have lingered for over a century, Plus as a bonus, who can’t love a new species named Eochonetes voldemortus? So I set out to find specimens of this brachiopod group in our collections. Above are internal valve views of the brachiopod Eochonetes clarksvillensis (Foerste, 1912), showing characteristic denticles (little teeth) along the hinge line. Below are external valve views. Jen Bauer herself kindly confirmed the identifications!

These specimens come from the Waynesville Formation (Katian) exposed at Caesar Creek in southern Ohio, a place we have had many paleontology field trips. E. clarksvillensis is common in the Waynesville and overlying Liberty formations. Read much more about it in Bauer and Stigall (2016).

The genus Eochonetes was named by Frederick Richard Cowper Reed in 1917 from the Ordovician of Scotland. (The British Isles were not too far away from Ohio in the Late Ordovician.) Reed was born in London in 1869 and died in Cambridge, England, in 1946. I tried mightily but could find no images of him to enter into the digital archives of the web. He was a smart and diverse geologist, attending Trinity College, Cambridge, and winning important awards and scholarships. He was appointed assistant to the Woodwardian Professor of Geology at Cambridge in 1892, a position he kept until retirement. In 1901 he earned the Sedgwick Prize for his work on the rivers of East Yorkshire, wrote a book on the geology of the British Empire (much easier to do today!), and yet still found time to describe fossils in numerous papers.

The author of Eochonetes clarksvillensis is much better known to paleontologists of the Cincinnati region. It is August F. Foerste (1862-1936), who named Thaerodonta clarksvillensis in 1912. Foerste grew up and worked in the Dayton, Ohio, area, graduating from Denison University after publishing many papers as a student. He returned to Dayton after earning a PhD from Harvard, teaching high school for 38 years. When he retired he turned down a teaching position at the University of Chicago and instead worked at the Smithsonian Institution until the end of his life. He is one of the giants of the Cincinnati School of paleontology.


Bauer, J.E. and Stigall, A.L. 2016. A combined morphometric and phylogenetic revision of the Late Ordovician brachiopod genera Eochonetes and Thaerodonta. Journal of Paleontology 90: 888-909.

Reed, F.R.C. 1917. The Ordovician and Silurian Brachiopoda of the Girvan District: Transactions of the Royal Society of Edinburgh 51: 795–998.

Wooster’s Fossil of the Week: A large trepostome bryozoan on a nautiloid conch (Upper Ordovician of northern Kentucky)

March 17th, 2017

This massive trepostome bryozoan, a solid lump of biogenic calcite, was collected earlier this week on the latest Team Cincinnati field expedition into the treasure-filled Upper Ordovician underlying and surrounding that city. Wooster students Matt Shearer, Luke Kosowatz and I are pursuing projects related to trepostome bryozoans and bioerosion (the biological destruction of hard substrates). The above specimen combines both these worlds, and more. Note the concavity at the base of the specimen. It comes from the Bellevue Formation (Katian) exposed on Bullitsville Road near the infamous Creation Museum (C/W-152).

Underneath the bryozoan colony (its zoarium) is this conical impression. It is an external mold of a straight nautiloid conch, the shell of a common squid-like cephalopod during the Ordovician. After the death of the nautiloid its empty tubular conch rested on the seafloor. This hard surface attracted the larvae of a variety of bryozoans that spread their calcitic zoaria (colonial skeletons) across the surface. Eventually one trepostome bryozoan species gained dominance over the space and occupied it all, growing into the large colony we see today. It even wrapped around the aperture of the conch (on the left) and grew a bit into the tube. Since the nautiloid conch was made of unstable aragonite, it long ago dissolved away, leaving an impression (external mold) in the stable calcite of the bryozoan.

How do we know there were earlier generations of bryozoans on this conch? We see them exposed upside-down on the surface of the external mold. Above we see the thin, branching cyclostome bryozoan Cuffeyella in the foreground, with a sheet of an encrusting trepostome bryozoan in the background. There are several other earlier bryozoans visible on this surface, revealing an ecological succession. There may be soft-bodied organisms preserved on this surface as well. This locality yielded the first described specimens of bioimmuration in the Ordovician (see Wilson et al., 1994).

There were other large trepostome bryozoans found in this same locality. I couldn’t resist cutting one in half to see what the inside looked like.

In this close view of the cross-section through the calcitic trepostome bryozoan we see numerous round holes drilled by some sort of worm seeking protective space so it could filter-feed. (In other words, it was not preying on the bryozoan.) The most intense boring of the specimen appears to have taken place just before and after the death of the colony. We know some borings were excavated into living bryozoan skeleton because the bryozoan formed reactive tissue around the intruder. The very tiny reddish-brown dots scattered in layers are “brown bodies“, the organic remnants of bryozoan polypides in their skeletal tubes (zooecia).

It has been a pleasure to return to the extraordinary Cincinnati fossils!


Taylor, P.D. 1990. Preservation of soft-bodied and other organisms by bioimmuration—a review. Palaeontology 33: 1-17.

Wilson, M.A. 1985. Disturbance and ecologic succession in an Upper Ordovician cobble-dwelling hardground fauna. Science 228: 575-577.

Wilson, M.A., Palmer, T.J. and Taylor, P.D. 1994. Earliest preservation of soft-bodied fossils by epibiont bioimmuration: Upper Ordovician of Kentucky. Lethaia 27: 269-270.

Team Cincinnati moves into Kentucky for additional fieldwork

March 12th, 2017

Maysville, Kentucky — It was another frigid morning under the clear, pitiless skies of the Cincinnati region, but Luke Kosowatz (’17) was in good spirits. He is collecting at our first stop of the day: an exposure of the Bellevue Formation (Upper Ordovician, Katian) along the Bullitsville Road in northern Kentucky (N 39.08121°, W 84.79230°; C/W-152). Luke is sorting out bioeroded bryozoans and brachiopods here.

Matt Shearer (’18) joins Luke on the outcrop. If the place looks familiar it’s because William Harrison (’15) and I were here almost exactly three years ago.

In cosmic irony, the Bullitsville outcrop is nearly a neighbor of the Creation Museum. It was closed this Sunday morning — who would have guessed? Do Creationists ponder the fact that their pseudoscientific establishment sits on an incredible record of fossils 450 million years old? They do indeed: “These conditions and processes would be expected during the global catastrophic Flood described in the Scriptures. The thin alternating coarse-grained limestone and fine-grained shale layers could be deposited quickly under such catastrophic conditions.” Of course.

We were also near Big Bone Lick State Park, the birthplace of American vertebrate paleontology.

This site has an excellent life-sized diorama of Late Pleistocene animals (mammoths, mastodons, bison, ground sloths and even vultures) getting mired in bogs infused with salty water.

Team Cincinnati then traveled east for about an hour to the magnificent exposures of the Cincinnatian Group around Maysville, Kentucky. Here we targeted the Corryville Formation exposed along the AA Highway (N 38.60750°, W 83.76775°).

As with all our sites, the fossils are extraordinary. This is an ordinary slab of limestone from the Corryville with dozens of well-preserved strophomenid brachiopods.

For nostalgia on my part, we visited an outcrop along US 62 at the southern edge of Maysville where the Corryville Formation is again exposed (N 38.60932°, W 83.81070°). It is at this site that I collected a cave-dwelling bryozoan fauna now the subject of a manuscript Caroline Buttler (National Museum Wales) and I are finishing up this month. The cave interval was destroyed by later roadwork, but the remaining outcrops were superb for our purposes.

We ended the field day about seven kilometers north at another outcrop of the Corryville along US 62 (N 38.6445°, W 83.77678°).  I was so distracted by the diversity of fossils that I forgot to take pictures!

Dinner was at El Caminante Mexican Restaurant in Maysville. It was so good we are compelled to recommend it to future geological visitors.

Wooster Geologists launch Team Cincinnati 2017

March 11th, 2017

Harrison, Ohio — Our first fieldwork of the year started on this cold, cold March day in southeastern Indiana. (Note the white icicles on the outcrop.) Luke Kosowatz, Matt Shearer and I have begun our projects in the magnificent Cincinnatian Group (Upper Ordovician, Katian) with its fantastic fossils on the first day of Wooster’s spring break. Despite the sunlight, it was 19°F when we had to leave the warm vehicle to start collecting fossils at our first stop shown above. This is the US 27 roadcut outside Richmond, Indiana, beloved by paleontologists (N 39.78631°, W 84.90318°). Here the lower Whitewater Formation is well exposed and weathered just right to release millions of fossils from their rocky tombs. Luke is studying patterns of bioerosion (almost entirely borings) in the Cincinnatian for his Independent Study thesis, and Matt is examining the distribution of bryozoan taxa for his I.S. work. We’ll have more details on their investigations later.

Today we started at the top of the Cincinnatian Group and worked our way down section as we moved south through Indiana towards the Ohio River. One of our sites was the Brookville Lake Dam emergency spillway exposure, seen above on the other end of the dam.

We climbed up the dam itself to get to the spillway exposure, which is magnificent. We did not collect here, though, because we couldn’t assure tight stratigraphic control of our specimens. There is too much downslope movement of fossils and rocks at this site for us to be certain about the horizons from which the fossils came.

Southgate Hill is a spectacular series of roadcuts north of St. Leon, Indiana (N 39.33909°, W 84.95306°). Matt and Luke are here collecting from the top of the Waynesville Formation.

Our last outcrop of the day was at the top of this sequence of limestones and shales exposed at another large roadcut, this one near Lawrenceburg, Indiana (N 39.09863°, W 84.87683°). At the very top is the rubbly Bellevue Formation, from which we collected magnificent trepostome bryozoans, many with beautiful borings.

Despite the temperatures, we had fun today and look forward to another three days of field paleontology in what must be the most fossiliferous rocks in the world. We are fortunate to live so close to these treasures.

Wooster’s Fossil of the Week: Encrusting craniid brachiopods (Upper Ordovician of southeastern Indiana)

March 10th, 2017

The two irregular patches above are brachiopods known as Petrocrania scabiosa encrusting the ventral valve of yet another brachiopod (Rafinesquina). That species name “scabiosa” is evocative if not a little unpleasant — it is also the root of the English “scab”.

Petrocrania scabiosa is in a group of brachiopods we used to call “inarticulates” because their two valves are not articulated by a hinge as they are in most brachiopods. Instead they are held together by a complex set of muscles. Now we place these brachiopods in the Class Craniforma, an ancient group which originated in the Cambrian and is still alive today.

Petrocrania scabiosa was a filter-feeder like all other brachiopods, extracting nutrients from the seawater with a fleshy lophophore. The Wooster specimens are part of our large set of encrusting fossils (a type of sclerobiont) in our hard substrate collection. They have irregular shells that are circular in outline when they grew alone, and angular when they grew against each other.

Some craniid brachiopods were so thin that their shells repeated the features of the substrate underneath them, a phenomenon known as xenomorphism (“foreign-form”).

Petrocrania scabiosa brachiopods (circular) on a Rafinesquina brachiopod, along with a trepostome bryozoan that encrusted some brachiopods and grew around others. The P. scabiosa on the far left shows xenomorphic features. Specimen borrowed from the University of Cincinnati paleontology collections.

A 2007 College of Wooster paleontology field trip to the Upper Ordovician locality near Richmond, Indiana, where these specimens were found. Students are in the traditional paleontological poses.

[Originally published May 22, 2011.]

Wooster’s Fossil of the Week: A receptaculitid (Middle Ordovician of Missouri)

February 10th, 2017

This week’s fossil is a long-standing paleontological mystery. Above is a receptaculitid from the Kimmswick Limestone (Middle Ordovician) near Ozora, Missouri. I think I found it on a field trip with Frank Koucky in the distant mists of my student days at Wooster, but so many outcrops, so many fossils …

Below is a nineteenth century illustration of a typical receptaculitid fossil. They are sometimes called “sunflower corals” because they look a bit like the swirl of seeds in the center of a sunflower. They were certainly not corals, though, or probably any other kind of animal. Receptaculitids appeared in the Ordovician and went extinct in the Permian, so they were confined to the Paleozoic Era. Receptaculitids were bag-like in form with the outside made of mineralized pillars (meroms) with square or diamond-shaped heads. The fossils are usually flattened disks because they were compressed by burial. You may notice now that the fossil at the top of this post is a mold of the original with the dissolved pillars represented by open holes. (Paleontologists can argue if this is an external or internal mold.)So what were the receptaculitids? When I was a student we called them a kind of sponge, something like a successor of the Cambrian archaeocyathids. In the 1980s a convincing case was made that they were instead a kind of alga of the Dasycladales. Now the most popular answer is that they belong to that fascinating group “Problematica”, meaning we have no idea what they were! (Nitecki et al., 1999). It’s those odd meroms that are the problem — they appear in no other known group, fossil or recent.

I find it deeply comforting that we still have plenty of fossils in the Problematica. We will always have mysteries to puzzle over.
Another Wooster receptaculitid specimen, this time seen from the underside showing side-views of the meroms.
Diagram of a receptaculitid in roughly life position showing its inflated nature and pillar-like meroms. From Dawson (1880, fig. 25): a, Aperture (probably imaginary here). b, Inner wall. c, Outer wall. n, Nucleus, or primary chamber. v, Internal cavity.

Finally, this is what a typical receptaculitid looks like in the field (Ordovician of Estonia). Note that nice sunflower spiral of the merom ends.


Dawson, J.W. 1880. The chain of life in geological time: A sketch of the origin and succession of animals and plants. The Religious Tract Society, 272 pages.

Nitecki, M.H., Mutvei, H. and Nitecki, D.V. 1999. Receptaculitids: A Phylogenetic Debate on a Problematic Fossil Taxon. Kluwer Academic/Plenum, 241 pages.

[Originally published on September 18, 2011]

Wooster’s Fossils of the Week: Revisiting a pair of hyoliths from the Middle Ordovician of Estonia

January 20th, 2017

We met these modest internal molds of the mysterious hyoliths about five years ago. With a dramatic new development in hyolith studies, they are worth seeing again.

These fossils are internal molds (the sediment that filled the shell) of of flattened cones composed of the carbonate mineral aragonite. The aragonite shells dissolved away after burial, leaving the cemented sediment behind. That’s what we see above, in their stark simplicity. (We also see wiggly indentations that are the trace fossil Arachnostega, which is what I collected them for in the first place.) They were found in the Middle Ordovician of Estonia.

Hyalites, though common throughout the Paleozoic, have been difficult to place in a taxonomic category. Because of their easily-dissolved aragonite skeletons, most fossils are like these — simple molds and casts. A few were found with some preserved internal organs, which added to the intrigue. Their flattened conical shells had a hinged lid (operculum) over the open end. Extending from each side in the space between the operculum and cone were two calcareous rods called helens (a name deliberately chosen so as not to evoke a particular function). They were rumored to be deposit-feeders, based on no real evidence, it turns out.

An excellent paper appeared earlier this month showing dramatic evidence of hyolith soft parts in the Cambrian of western Canada (Moysiuk et al., 2017). The authors reconstruct the iconic Cambrian hyolith Haplophrentis “as a semi-sessile, epibenthic suspension feeder that could use its helens to elevate its tubular body above the sea floor”. Their primary evidence is a magnificently preserved lophophore (tentacular filter-feeding apparatus) and a U-shaped digestive tract with a dorsolateral anus. These features not only give the hyoliths a life mode and feeding habit, they place them systematically among the lophophorates, a group that includes brachiopods, phoronids and bryozoans.

Haplophrentis in the Burgess Shale (Middle Cambrian) at the Walcott Quarry, Burgess Pass, British Columbia, Canada.

Reconstruction of Haplophrentis on the Cambrian sea floor. The tentacular lophophore is seen extending out underneath the operculum. Beautiful art by D. Dufault of the Royal Ontario Museum.

It’s not often we see such dramatic changes in the taxonomic placement and paleoecological habits of a large, extinct group. It is also not often that invertebrate fossils make headlines!


Moysiuk, J., Smith, M.R. and Caron, J.B. 2017. Hyoliths are Palaeozoic lophophorates. Nature doi:10.1038/nature20804

Wooster’s Fossils of the Week: Upper Ordovician brachiopods and bryozoans from paleontology class collections

January 6th, 2017

1-geopetal-tommyLast semester the Invertebrate Paleontology class at Wooster had its annual field trip into the Upper Ordovician of southern Ohio. We had a great, if a bit muddy, time collecting fossils for each student’s semester-long project preparing, identifying, and interpreting their specimens. Like all research, especially when it starts in the field, there were discoveries and surprises. I always highlight a particular specimen collecting by a student in this blog.

Above is a cross-section of a specimen found by Tommy Peterson (’19). It is the rhynchonellid brachiopod Hiscobeccus capax almost completely enveloped by an encrusting trepostome bryozoan. We’ve cut through the center of the brachiopod, revealing gray micritic sediment and clear calcite crystals. We can infer from this simple specimen that the brachiopod died and its shell remained articulated. Sediment drifted in, filling the bottom half of the shell. The bryozoan eventually sealed it all up as it used the brachiopod shell for a hard substrate on a muddy seafloor. The remaining void space was filled in by the precipitation of calcite crystals. You can see that the crystals nucleated from the outer margin of the cavity and grew inwards, a kind of calcareous geode. I’m intrigued by the irregular sediment surface and the manner in which calcite nucleated upwards from it. I suspect this sediment was itself cemented before the calcite crystals appeared.

This kind of structure is called a geopetal. It shows the “way up” at the time of crystal formation. Gravity held the pocket of sediment in the bottom of the shell, leaving the void at the top. Nice little specimen.

2-constellaria-alexisThis star-studded bryozoan found by Alexis Lanier (’20) was going to be the Fossil of the Week, but then I saw that last year I highlighted the very same species! I think the bryozoan Constellaria is cool. Read all about it and its history at the link.

3-table-of-traysHere are the completed specimen trays for half the class. (Grading this project took, as you might imagine, considerable time!). Every week in lab, after we had done the assigned work, we got out the trays and cleaned, prepared, and identified the specimens. Students learned how to use the rock saws and make acetate peels of the bryozoans and corals.

4-tray-insideInside a typical tray. We are very grateful for the many online sources to aid identification of these Cincinnatian fossils. Three in particular were most valuable: Alycia Stigall’s Digital Atlas of Ordovician Life, Steve Holland’s stratigraphic and paleontological guide to the Cincinnatian, and the spectacular Dry Dredgers website.

Ohio is a paleontological paradise!

Wooster’s Fossils of the Week: Ordovician bioerosion trace fossils

December 9th, 2016

screen-shot-2016-12-03-at-2-06-03-pmThis week’s post is a celebration of the appearance of a remarkable two-volume work on trace fossils and evolution. The editors and major authors are my friends Gabriela Mángano and Luis Buatois (University of Saskatchewan). They are extraordinary geologists, paleontologists and ichnologists (specialists on trace fossils). They led this massive effort of multiple authors and thousands of manuscript pages. Turns out they are inspiring scientific leaders as well as sharp-eyed editors.

My contribution is in the first volume within a chapter (co-authored with Gabriela, Luis, and Mary Droser of the University of California, Riverside) entitled “The Great Ordovician Biodiversification event”. We examine here the relationship between trace fossils and the critical evolution of marine communities through the Ordovician. My main responsibility was sorting out the changes in the bioeroders over the course of the period. Way back in 2001, Tim Palmer and I noticed a rise in bioerosion trace fossil diversity and abundance in the Middle and Late Ordovician. We grandly called it the “Ordovician Bioerosion Revolution”. The concept and name stuck.

The top image is Fig. 4.8 from the book. The caption: Upper Ordovician bioerosion structures. (a) Trypanites weisi (cross-sectional view) in a carbonate hardground. Katian, Grant Lake Limestone, near Washington, Kentucky, USA; (b) Trypanites weisi (bedding-plane view) in a carbonate hardground. Katian, Grant Lake Limestone, near Manchester, Ohio, USA; (c) Palaeosabella isp. in a trepostome bryozoan. Katian, Whitewater Formation, near Richmond, Indiana, USA; (d) Petroxestes pera. Katian, Whitewater Formation, Caesar Creek Lake emergency spillway, near Waynesville, Ohio, USA; (e) Ropalonaria venosa in a strophomenid brachiopod. Katian, Liberty Formation near Brookville, Indiana, USA.

screen-shot-2016-12-03-at-2-08-42-pmThe cover of the book, which is described here on the publisher’s website.


Mángano, G., Buatois, L., Wilson, M.A. and Droser, M. 2016. The Great Ordovician Biodiversification event, p. 127-156. In: Mángano, G. and Buatois, L. (eds.), The trace-fossil record of major evolutionary events. Topics in Geobiology 39 (Springer).

Wilson, M..A. and Palmer, T.J. 2001. The Ordovician Bioerosion Revolution. Geological Society of America Annual Meeting, Boston, Paper No. 104-0. November 7, 2001.

Wilson, M.A. and Palmer, T.J. 2006. Patterns and processes in the Ordovician Bioerosion Revolution. Ichnos 13: 109-112.

Wooster’s Pseudofossils of the Week: Artifacts in thin-sections of Ordovician limestones from southeastern Minnesota

October 21st, 2016

1bubfirstIt is always exciting to a geologist when thin-sections of curious rocks are completed and ready for view. A thin-section is a wafer of rock (30 microns thick) glues to a glass slide and examined by transmitted light through a petrographic microscope. They provide fantastic views of the mineralogy, paleontology, and structure of a rock in exquisite detail. Thin-sections are also full of mysteries since we have essentially two-dimensional slices through three-dimensional materials.

Thin-sections from the Decorah Formation samples collecting by Team Minnesota this past summer were finally available this week for study. I took the first look at slides of limestones containing ferruginous (iron-rich) ooids we gathered as part of Etienne Fang’s (’17) Independent Study. The first structures I saw were the crazy dark outlines above. What sort of fossils are these, I wondered. Could they be sponges? Odd bryozoans? Borings through the rock fabric? I was ready to post them here as mystery fossils to solicit your opinions. Now, though, they instead make a cautionary tale.

2bub730There are many of these features in a single slide from the Decorah Formation exposed at the Golden Hill outcrop near Rochester, Minnesota. Some are astonishingly complex. It then began to occur to me that these structures were too convoluted and unpredictable to actually be fossils. It also bothered me that to focus on them required to put the rest of the field out of focus. That only made sense if these oddities were in the epoxy, not the rock itself.

3buboverlapEtienne showed me how to demonstrate that these funny loops were not in the rock with this view: You can just make out the greenish lines overlapping the cut surface of this ferruginous ooid. Turns out I was excited about air bubbles in the cementing epoxy. They have nothing to do with the rock. I nearly posted my own pseudofossils.

4trio7321I held out hope, though, that these odd white objects in another thin-section of ooid-rich limestone. They appear to be ghostly outlines of ooids with a finely-textured object inside. They look like seeds with embryos within. Several are scattered through the thin-section. Another mystery fossil!

5duo7321A closer view. Strange how each internal object seems connected to an ooid on the outside, making them asymmetrical in their placements.

6single7321Strange also how once again the details of the internal object can only be seen with the rest of the slide out of focus. Yes, another artifact in the epoxy. This time we may be looking at holes left by ferruginous ooids plucked from the rock through the grinding process, pulling a patch of epoxy with them. Somehow this happened when the now-missing ooid was wedged against another. Nothing to see here, folks.

7ooid7301fAt least I can take the opportunity to show how cool Etienne’s ferruginous ooids are. Note that this one has a greenish layer midway through the cortex. It looks like the mineral chamosite to me. Spectacular detail in the lamellae, but only visible if the image is over-exposed.

8bifoliate7301hThere are plenty of real fossils in these thin-sections, of course. My favorites are these bifoliate bryozoans (lower right half) with their zooecia filled with ferruginous material. Note that the ooid above has had some of its lamellae dissolved away, probably because of some mineral diversity. Also note in the upper right another one of those crazy air bubbles.

The lesson I learn over and over: think, but then think again.




Next »