Wooster’s Fossil of the Week: A very large Upper Jurassic ammonite from southern England

August 14th, 2015

1 Titanites fragment Bowers QuarryThe shard above doesn’t look like much. It comes from a specimen far too large for us to excavate, let alone pack onto a plane for the trip home.
2 TitanitesinrockHere’s a view of one of the full specimens still in bedrock.
3 KN&Titanites 2002And here we see a liberated specimen with Katherine Nicholson Marenco (’03) for scale 12 years ago. This is the ammonite Titanites anguiformis Wimbledon and Cope, 1978, from the Portland Freestone (anguiformis Zone, Portlandian, Upper Jurassic) exposed on the Isle of Portland in Dorset, southern England. Katherine and I, with help from Rich Poole (’03), Clive Griffiths, Tim Palmer and Paul Taylor, worked there in the summer of 2002 looking at encrusting faunas on shells for her Independent Study project. We could only take bits home, hence the fragment above. It was a wonderful field season in a spectacular place.

Titanites anguiformis is one of the largest ammonites, with specimens up to a meter in diameter. Our specimens above are all molds made of limestone; the aragonitic shells dissolved away. These lumbering beasts were swimming predators like all ammonoids, feasting on a variety of invertebrates in a shallow Jurassic sea.
4 CoombefieldBlocks2Our team spent most of its time in active building stone quarries like this one (Coombefield) looking at excavated blocks of Portland Freestone. This rock is one of the most comon building stones in England.
5 KNChiselling2The many surfaces of the blocks exposed fossils in a variety of orientations. Here is Katherine doing what she did for three weeks: chiseling bits of shell from the limestone.
6 Titanitesclose-up1Our goal was to collect surfaces like this. We have here an internal mold of Titanites anguiformis. The inner surface of the shell (a cryptic space) was encrusted by bryozoans, serpulid worms and oysters. When the aragonitic shell dissolved, the undersides of the encrusters were exposed like we see here. We then studied the attachment surfaces of the encrusters, looking at their growth patterns and successional overgrowths. Katherine’s work resulted in this GSA presentation.

[#Beginning of Shooting Data Section] Nikon CoolPix2500 2002/06/18 10:24:09 JPEG (8-bit) Normal Image Size:  1600 x 1200 Color ConverterLens: None Focal Length: 5.6mm Exposure Mode: Programmed Auto Metering Mode: Multi-Pattern 1/900.9 sec - f/4.5 Exposure Comp.: 0 EV Sensitivity: Auto White Balance: Auto AF Mode: AF-S Tone Comp: Auto Flash Sync Mode: Not Attached Electric Zoom Ratio: 1.00 Saturation comp: 0 Sharpening: Auto Noise Reduction: OFF [#End of Shooting Data Section]This fossil bit is thus a reminder of a great field season on the coast of southern England many years ago.


Falcon‐Lang, H. 2011. The Isle of Portland, Dorset, England. Geology Today 27: 34-38.

Wimbledon, W.A. and Cope, J.C.W. 1978. The ammonite faunas of the English Portland Beds and the zones of the Portlandian Stage. Journal of the Geological Society of London 135: 183-190.

Final day in the Silurian of New York

August 9th, 2015

1 Caleb new excavationLOCKPORT, NEW YORK (August 9, 2015) — This was the last day in the field for Andrej Ernst and me. We met all our goals (collecting bryozoans from the Rochester Shale, finding sclerobionts anywhere, and learning more about New York fossil localities) and had a great time. Now we have two days left to pack our specimens, ship those going to Germany, and review our notes. We will probably get some time tomorrow to see Niagara Falls!

We worked this morning in Caleb’s Quarry, a place we visited on our first day. Paul Chinnici, one of the fossil enthusiasts working this quarry, was our generous host. We were impressed with how much has changed in just the five days since our last time here. The large excavation above, for example, is new. This is fossil-collecting at a very large scale!

2 Caleb blocksAndrej searched for more bryozoans in the top layers of the shales while I studied these blocks of resistant calcareous siltstones and limestones. They are from a layer about midway down in the quarry. The shales erode to clay around them while they stand in relief.

3 Caleb block plan viewThe blocks have excellent trace fossils, including Chondrites seen in this bedding-plane view on the top of a block. Chondrites was made by small animals mining the sediments for deposited organic material.

4 Caleb block side viewThe trace fossils cut down into the siltstone, seen here in side view. The tunnels are filled with a clay-rich sediment that weathers a lighter color, giving us this contrast.

5 Caleb turbiditeMany of the blocks show a turbidite-like structure, with coarse shelly debris at the base and cross-bedded siltstone above. This may mean that the deep-waters that accumulated the clays to make the gray Rochester Shale were occasionally disturbed by massive turbidity flows of a sediment-water slurry. Were these triggered by storms or seismic events connected to orogenies to the east?

6 Caleb block stone in placeBecause of the recent excavations at Caleb’s Quarry, we were able to see this persistent calcareous siltstone in its stratigraphic context. It is here marked by the hammer. Note the gray shales above and below.

With this last observation, our fieldwork is officially done!

7 Paper pulp factory Lockport CaveDuring the afternoon we again visited the Erie Canal locks in Lockport. This time we took a tour of “Lockport Cave”, which is really a set of tunnels dug in the mid-19th century to channel river water through “races” to power factories. It is quite an ingenious use of hydropower before electricity. Above are the remains of the last of these water-powered factories, a paper pulp mill.

8 Lockport Cave entranceWe entered the main tunnel through a massive pipe that used to bring fast-flowing water to water wheels in the paper factory. The pipe is eight feet in diameter, and the water flowed at about 12 miles per hour.

9 Lockport Cave entrance pipeThis is the only one of my interior photos to succeed. The place was fascinating, even if it was cool, damp and dark. The trip included a short underground boat ride along a narrow water channel.

10 Upside-down railroad bridgeFinally, just because it is cool, here is the Lockport Railroad Bridge over the Erie Canal. It is called “the upside-down bridge” because the trusses are underneath the tracks. The legend is that the railroad company built the bridge this way to limit the height of boats on the canal, thus limiting its competition for cargo transport!

Return to the Silurian of New York

August 8th, 2015

1 Cichorium intybus SR 93 585LOCKPORT, NEW YORK (August 8, 2015) — Andrej and I began some deep collecting of Silurian localities in the Lockport area today in our survey of the bryozoan and sclerobiont faunas. The sites are, shall we say, not the most attractive, so let’s start with this common but gorgeous flower along the roadsides in western New York: Cichorium intybus (chicory). It is an invasive perennial from Europe that now has a global distribution. It has its uses as a coffee substitute, livestock feed, and salad stock. I love the color and serrated leaves.

2 Andrej Hickory CornersAnd here is why we lead with a flower. Andrej Ernst is sorting through samples from the Hickory Corners locality on State Route 93 in Lockport. The fossiliferous limestone here is the Hickory Corners Member of the Reynales Formation (Lower Silurian, Aeronian). The bryozoans are wonderfully diverse, and the top of the unit is a bored carbonate hardground. We happily collected here most of the morning, despite the trash and traffic.

3 Lewiston B beds Niagara RoadWe returned to a site along railroad tracks at Niagara Street in Lockport to collect from the Lewiston Member, part B, of the Rochester Shale. Again, the bryozoans here are fantastic, including my new favorite, a delicate cyclostome named Diploclema.

4 Lewiston E Burleigh Hill Shale LaFarge QuarryOur last site of the day was along the entrance road to a quarry. With all the surrounding rock, the only fossiliferous horizon is exposed in a shallow drainage cut in the road itself. Andrej is pulling a few bryozoans from the top of Lewiston Member, part E, of the Rochester Shale. The thick shales above him are the Burleigh Hill Formation.

5 Erie Canal at LockportWhen our work was done for the day, we became tourists and visited the Erie Canal locks in Lockport. (Hence the name!) This is a view looking east from the bottom of the two-lock sequence. We wanted to see the locks actually transport a boat, but it was a slow Saturday afternoon.

6 Erie Canal Lock LockportA view of the massive doors upstream of one of the modern locks. The engineering feats here date back to the early 1820s.

7 Crinoidal cross-sets Erie CanalGeology is evident here too. This is a block of crinoidal limestone showing cross-stratification. Many of the older buildings in Lockport are made of Silurian stone excavated to create the Erie Canal.

Wooster’s Fossil of the Week: Small and common orthid brachiopods from the Upper Ordovician of Ohio

August 7th, 2015

Cincinnetina meeki (Miller, 1875) slab 1 585
One of the many benefits of posting a “Fossil of the Week” is that I learn a lot while researching the highlighted specimens. I not only learn new things, I learn that some things I thought I knew must be, shall we say, updated. The above slab contains dozens of brachiopods (and a few crinoid ossicles and bryozoans). I have long called the common brachiopod here Onniella meeki. Now I learn from my colleagues Alycia Stigall and Steve Holland at their great Cincinnatian websites that since 2012 I should be referring to this species as Cincinnetina meeki (Miller, 1875). Jisuo Jin sorted out its taxonomy in a Palaeontology article three years ago:

Phylum: Brachiopoda
Class: Rhynchonellata
Order: Orthida
Family: Dalmanellidae
Genus: Cincinnetina
Species: Cincinnetina meeki (Miller, 1875)
Cincinnetina meeki (Miller, 1875) slab 2 585This slab, which resides in our Geology 200 teaching collection, was found at the famous Caesar Creek locality in southern Ohio. It is from the Waynesville/Bull Fork Formation and Richmondian (Late Ordovician) in age.
Cincinnetina meeki (Miller, 1875) slab 3 585You may see some bryozoans in this closer view. This bed is a typical storm deposit in the Cincinnatian Group. The shells were tossed about, most landing in current-stable conditions, and finer sediments were mostly washed away, leaving this skeletal lag.


Jin, J. 2012. Cincinnetina, a new Late Ordovician dalmanellid brachiopod from the Cincinnati type area, USA: implications for the evolution and palaeogeography of the epicontinental fauna of Laurentia. Palaeontology 55: 205–228.

A day’s excursion into the Middle Devonian of western New York

August 7th, 2015

1 Wanakah at Buffalo CreekLOCKPORT, NEW YORK (August 7, 2015) — Today Andrej Ernst and I were able to join Brian Bade and his friends on a collecting trip up Buffalo Creek in Erie County, New York. Our goal was simply to look for interesting fossils in the Wanakah Shale Member of the Ludlowville Formation (Middle Devonian) and enjoy the fellowship of fossil enthusiasts. Success on both counts. It was a great day, and rather fun wading through the cool waters of the creek as we examined the shale on the banks.

2 Wanakah TrilobiteHere is an external mold of a trilobite in the soft Wanakah Shale. An external mold is an impression of the exterior of the organism. If you look at this upside-down it pops into reverse relief! This fossil is not recoverable because it would break into bits with any attempt to hammer it out. Andrej and I found plenty of bryozoans here, along with other cool fossils.

3 Bethany Center Centerfield LimestoneAs a bonus we also were able to visit the Bethany Center exposure of the Centerfield Limestone, also Middle Devonian. There isn’t much left of the exposure, as you can see, but we still found numerous encrusting organisms (sclerobionts) on brachiopods and the abundant rugose corals. We also got plenty of sun here.

Into the Niagara Gorge

August 6th, 2015

1 Lewiston-Queenston Bridge 080615LOCKPORT, NEW YORK (August 6, 2015) — It holds one of the strongest river currents in the world, the gorge of the Niagara River below Niagara Falls. That tremendous flow has cut a deep canyon through the Silurian rocks of the region, providing a superb opportunity for geologists to see the local stratigraphy and paleontology. Today our team walked into the gorge from Lewiston, New York, to explore the section. Carl Brett was our guide. Above is a view of the gorge at the Lewiston-Queenston Bridge that joins the USA on the right with Canada on the left. The forests are plenty dense, but there are rocks in those steep walls.

2 Gorge trailWe hiked along the Gorge Trail on the USA side upriver from Lewiston. The trail is actually an old road built for transport of construction materials used for the hydroelectric dams upriver.

3 Gorge block 080615We learned most of the geological context by examining fallen blocks along the trail. This was an interesting way to see the stratigraphy because the different formations dropped blocks randomly along the path.

4 AE080615I tried to get a surreptitious picture of my German colleague Andrej Ernst.

5 Grimsby crossbedsThe Grimsby Formation (Lower Silurian, Llandoverian) is a sandstone that has numerous sedimentary structures, including nice cross-sets.

6 Kinneyia Grimsby Niagara GorgeAndrej found this nice specimen of an enigmatic feature called Kinneyia. It may be a function of gas build-up underneath microbial mats on the ancient seafloor. I’ve always called it “elephant skin”.

7 Niagara Gorge section 080615A view of the gorge wall above us.

8 Rochester collecting Niagara GorgeWhen the trail reached the Rochester Shale, we spent some time searching it for fossils. The most common finds were cystoids (especially Caryocrinites) and the odd coronoid Stephanocrinus.

9 Andrej Carl 080615Andrej Ernst and Carl Brett on the Rochester Shale outcrop in the Niagara Gorge. Andrej noted many neglected bryozoans in the fossil fauna exposed here.

10 Sir Adam Beck Hydroelectric Generating StationsOur final stop was opposite the Sir Adam Beck Hydroelectric Generating Stations built on the Canadian side of the gorge. It is an awesome feat of engineering, and a prodigious amount of concrete.

We had an excellent time in the Niagara Gorge. I was at last able to see some of the nuances of Silurian stratigraphy that Carl Brett was explaining. As you can see, the weather was ideal.

We said goodbye to Carl at the end of the day as he departed for fieldwork in nearby southern Ontario.


Wooster Geologist in New York

August 5th, 2015

1 Calebs Quarry 080515LOCKPORT, NEW YORK (August 5, 2015) — What looks like an ordinary commercial quarry above is actually quite unusual. It is an excavation done entirely by amateur paleontologists (“citizen scientists”) to collect and preserve fossils from the Rochester Shale (Upper Silurian, Wenlockian). The story of Caleb’s Quarry is well told in the linked American Museum of Natural History article. It is near Lockport, New York, and one of the most famous fossil sites in the region. I’m lucky to be here.

This late summer expedition to New York is to help my German friend Andrej Ernst (University of Hamburg/University of Kiel) collect bryozoans from the Rochester Shale. This bryofauna is inadequately described for phylogenetic and biogeographic analyses, so Andrej has a grant to do the deed from outcrop sampling to preparation, analysis and publication. While assisting Andrej, I am also scouting out new localities for future geology Senior Independent Study projects at Wooster. We will be in Niagara and Erie Counties for a week doing this work.

2 CarlCalebsAbsolutely critical to the project is the field advice and direction of Carl Brett (University of Cincinnati). Carl is without peer when it comes to many paleontological and geological topics, but for the Silurian of New York he is one of the gods. Carl grew up in the region and has been studying the rocks and fossils since he was a young teenager. He gave us two days of magnificent stratigraphic instruction, and he introduced us to the amateur team digging at Caleb’s Quarry. We were also joined for three days by Brian Bade, a citizen scientist from Ohio with an extraordinary passion for fossils, along with deep knowledge and appreciation for how science works.

3 FredandCarlCalebsFred Barber, one of the excavators at Caleb’s Quarry, is here showing Carl Brett magnificent crinoids collected from this locality.

4 Crinoid Calebs 080515The gray shale matrix is homogenous and soft enough to be removed from the fossil by an expert preparator. This crinoid shows outstanding preservation down to the pinnules on its arms.

5 Bryozoan Calebs reconstructedOf course, Andrej and I are most interested in the bryozoans from Caleb’s Quarry. Here is a beautiful specimen that has been carefully reconstructed.

6 StriispiriferCalebsI found these brachiopod-rich beds intriguing. Striispirifer is a new name to me.

7 DalmanTriloCalebsTrilobites are always the stars of Paleozoic fossil sites like this. While we were at the quarry we watched one of the excavators (Kent Smith) unearth this gorgeous specimen. I believe it is Dalmanites limulurus.

8 ChondritesCalebsThe trace fossils here are very interesting. There may be project possibilities with this ichnofauna because of the diversity present at the quarry and the bedding plane exposures. This is the trace fossil Chondrites.

9 Jungle Jeddo tributaryAfter our quarry visit today we then stopped at some other exposures of the Rochester Shale. This scene shows what fieldwork is like without quarries and roadcuts! We are here along a tributary of Jeddo Creek, at the top of Lewiston Member B of the Rochester Shale. Hard to tell, eh?

10 Brian Jeddo Tributary Lewiston BHere Brian Bade is examining a deeply weathered section along the creek. Years ago Carl Brett took advantage of this disaggregation of the Rochester Shale to sieve the sediment for small fossils. He has generously given us the “washings” from this cut, which represent months of his work as a graduate student. They are loaded with tiny bryozoan bits, along with many other taxa.

11 Cherokee UnconformityWe ended the day with a look at several other outcrops in the Lockport area. The impressive contact here between the massive sandstone and the underlying red shales is called the Cherokee Unconformity. It is a megasequence boundary correlated across most of North America. It was thought until recently to be the Ordovician-Silurian boundary, but now all you see in this image is considered latest Ordovician.


Wooster’s Fossil of the Week: A conulariid revisited (Lower Carboniferous of Indiana)

July 31st, 2015

Conulariid03 585

This summer I’ve been updating some of the photos I placed in the Wikipedia system (check them out here, if you like; free to use for any purpose). I was especially anxious to replace a low-resolution image I had made of an impressive conulariid (Paraconularia newberryi) from the Lower Carboniferous of Indiana. The new version is above. Since I used the same specimen as a Fossil of the Week exactly four years ago to the day, I thought I’d take advantage of a slow summer and update that earlier text for this week:

I have some affection for these odd fossils, the conulariids. When I was a student in the Invertebrate Paleontology course taught Dr. Richard Osgood, Jr., I did my research paper on them. I had recently found a specimen in the nearby Lodi City Park that was so different from anything I had seen that I wanted to know much more. I championed the then controversial idea that they were extinct scyphozoans (a type of cnidarian including most of what we call today the jellyfish). That is now the most popular placement for these creatures today, although I arrived at the same place mostly by luck and naïveté.

The specimen above is Paraconularia newberryi (Winchell) found somewhere in Indiana and added to the Wooster fossil collections before 1974. A close view (below) shows the characteristic ridges with a central seam on each side.

Conulariid01 585Conulariids range from the Ediacaran (about 550 million years ago) to the Late Triassic (about 200 million years ago). They survived three major extinctions (end-Ordovician, Late Devonian, end-Permian), which is remarkable considering the company they kept in their shallow marine environments suffered greatly. Why they went extinct in the Triassic is a mystery.

ConulataThe primary oddity about conulariids is their four-fold symmetry. They had four flat sides that came together something like an inverted and extended pyramid. The wide end was opened like an aperture, although sometimes closed by four flaps. Preservation of some soft tissues shows that tentacles extended from this opening. Their exoskeleton was made of a leathery periderm with phosphatic strengthening rods rather than the typical calcite or aragonite. (Some even preserve a kind of pearl in their interiors.) Conulariids may have spent at least part of their life cycle attached to a substrate as shown below, and maybe also later as free-swimming jellyfish-like forms.

It is the four-fold symmetry and preservation of tentacles that most paleontologists see as supporting the case for a scyphozoan placement of the conulariids. Debates continue, though, with some seeing them as belonging to a separate phylum unrelated to any cnidarians. This is what’s fun about extinct and unusual animals — so much room for speculative conversations!


Driscoll, E.G. 1963. Paraconularia newberryi (Winchell) and other Lower Mississippian conulariids from Michigan, Ohio, Indiana, and Iowa. Contributions from the Museum of Palaeontology, The University of Michigan 18: 33-46.

Hughes, N.C., Gunderson, G.D. and Weedon, M.J. 2000. Late Cambrian conulariids from Wisconsin and Minnesota. Journal of Paleontology 74: 828-838.

Sendino, C., Zagorsek, K. and Taylor, P.D. 2012. Asymmetry in an Ordovician conulariid cnidarian. Lethaia, 45: 423-431.

Van Iten, H.T., Simoes, M.G., Marques, A.C. and Collins, A.G. 2006. Reassessment of the phylogenetic position of conulariids (?Vendian–Triassic) within the subphylum Medusozoa (Phylum Cnidaria). Journal of Systematic Palaeontology 4, 109–118.


Wooster’s Fossil of the Week: A calcareous sponge from the Lower Cretaceous of England

July 24th, 2015

Raphidonema faringdonense 070715a 585One of my favorite fossil localities is a gravel pit in Oxfordshire, England. Gravel pits are not usually good for fossil collecting given their coarse nature and high-energy deposition, but the Lower Cretaceous (Aptian) Faringdon Sponge Gravels are special. They are tidal gravels sitting unconformably over Jurassic rocks that have an extraordinary diversity and abundance of marine fossils, both from the Cretaceous and reworked from the Jurassic below. I have previously described in this blog bored cobbles, bryozoans, ammonites and a plesiosaur vertebra from this unit. Above is one of the most characteristic fossils from Faringdon, the calcareous sponge Raphidonema faringdonense (Sharpe, 1854).
Raphidonema faringdonense 070715b 585This is a view of the upper surface of this sponge. Like most sponges it was a filter-feeder sitting stationary on the seafloor. This one was probably attached to a cobble in the gravel. It is in the Class Calcarea because it has a fused network of calcitic spicules making up its skeleton. This is why it has remained a very resistant, rigid object long after death. It probably spent some time rolling around in those gravels with the tidal currents.
Sophie Faringdon 2007The Faringdon Sponge Gravels are a member of the Faringdon Sand Formation. They are cross-bedded gravels that have been mined for construction purposes since Roman times. Above is Wooster Geologist Sophie Lehmann (as a student) when she and I visited one of the gravel pits in 2007. For the record, this sponge comes from the Red Gravel, 5.5-8.5 meters above the disconformity with Oxfordian limestones, in the Wicklesham gravel pit on the southeast edge of Faringdon, Oxfordshire (51.647112° N, 1.585094° W).

after Maull & Polyblank, photogravure, circa 1856

Daniel Sharpe FRS (1806-1856) named Raphidonema faringdonense in 1854. He was born in Marylebone, Middlesex, England. His mother died shortly after his birth and he was raised by his uncle Samuel Rogers, a literary figure of some merit. He entered the mercantile business as an apprentice when he was 16, and he stayed connected with trading the rest of his life. His first research as a geologist (and this was very early in the discipline of geology) was examining geological structures around Lisbon, Portugal. He then studied the strata of north Wales and the Lake District of England. Sharpe was an early opponent of Adam Sedgwick in a dispute over the Cambrian, which brought him some notoriety among English geologists. His most prominent geological work was sorting out what rock cleavage meant in regard to stress and strain, using distorted fossils as part of his evidence. He died as the result of a riding accident in 1856, shortly after he had been elected president of the Geological Society of London.

Sorting out the taxonomic history of Raphidonema faringdonense is more complex than I would have expected for such a simple fossil. I’m using the most common version of the name, but we also see “farringdonense“, “faringdonensis” and farringdonensis“. (I know. Who worries about such things?)
Manon farringdonense Sharpe figuresManon farringdonense description 1854Above are Sharpe’s original figures of Raphidonema faringdonense, along with his description (and the nice bryozoan Reptoclausa hagenowi below). We can see that he spelled the species name with a double r in keeping with a common spelling of the village’s name then. I don’t know when we lost one of those letters.

Just to add to the complexity, Raphidonema is also the genus name of a filamentous green alga. Since it is not an animal, though, there is no legal problem with having the name also refer to a sponge. (There should be a rule against such homonymy, but there’s not.)


Austen, R.A.C. 1850. On the age and position of the fossiliferous sands and gravels of Faringdon. Quarterly Journal of the Geological Society of London 6: 454-478.

Lhwyd, E. 1699. Lithophylacii Britannici Ichnographia. 139 pp. London.

Pitt, L.J. and Taylor, P.D. 1990. Cretaceous Bryozoa from the Faringdon Sponge Gravel (Aptian) of Oxfordshire. Bulletin of the British Museum, Natural History. Geology 46: 61-152.

Sharpe, D. 1854. On the age of the fossiliferous sands and gravels of Farringdon and its neighbourhood. Quarterly Journal of the Geological Society of London 10: 176-198.

Wilson, M. A. (1986). Coelobites and spatial refuges in a Lower Cretaceous cobble-dwelling hardground fauna. Palaeontology, 29(4), 691-703.

Wooster’s Fossil of the Week: A coiled nautiloid from the Middle Devonian of Ohio

July 17th, 2015

Goldringia cyclops Columbus Ls Devonian 585The above fossil is a nautiloid cut in cross-section, showing the large body chamber at the bottom and behind it to the left and above the phragmocone, or chambered portion of the conch (shell). It is a species of Goldringia Flower, 1945, found in the Columbus Limestone (Middle Devonian, Eifelian) exposed in the Owen Stone Quarry near Delaware, Ohio. It is a nice specimen for both what it shows us about a kind of nautiloid coiling and for clues to its preservation.

This specimen was originally labelled Gyroceras cyclops Hall, 1861. In 1945, Rousseau Flower designated this taxon the type species of Goldringia. I can’t tell if we really have G. cyclops here or some other species, so I’m leaving it at the genus level. The old name lingers, though, in the term for this kind of open coiling: gyroceraconic. It is one of the earliest examples of the nautiloids having the phragmocone positioned above the body chamber, presumably for stable buoyancy.
Pentamerid embedded 071315I like the clues to the early history of this conch after death. The chambers are entirely filled with sediment, a fossiliferous micrite. You can see places where the original shell was broken and larger bits infiltrated, like the whole brachiopod shown above. This brachiopod appears from its cross-section to be a pentamerid. Also visible are strophomenid brachiopods and gastropods.
Winifred GoldringRousseau Hayner Flower (1913–1988) described Goldringia in 1945. He doesn’t directly say who he named it after, but he thanks “Dr. Winifred Goldring of the New York State Museum” in the acknowledgments. We can tell Flower’s story later (and it’s a good one), but this gives us a chance to introduce Winifred Goldring (1888-1971). She was the first paleontologist to describe the famous Gilboa fossil flora (Devonian) in upstate New York, and she was the first woman State Paleontologist of New York (or anywhere, for that matter). (Now there is Lisa Amati in this prestigious position. Congratulations, Lisa!) Goldring grew up near Albany, New York, one of nine children in a very botanical family. She graduated from Wellesley College in 1909 with a bachelor’s degree in geology (very unusual for a woman at the time). She stayed at Wellesley to earn a master’s degree (1912). She also taught geology courses at Wellesley. In 1913 she studied geology at Columbia University with the famous Amadeus Grabau. In 1914, Goldring joined the scientific staff at the New York State Museum as a “scientific expert”. She worked her way up through the many ranks there to become State Paleontologist in 1939. She is best known as a paleontologist for her work with the fascinating Gilboa fossil forest, bringing her early upbringing by botanists to full circle. Along the way she was the first woman president of the Paleontological Society (in 1949) and vice-president of the Geological Society of America (in 1950). A hero of paleontology.


Flower, R.H. 1945. Classification of Devonian nautiloids. American Midland Naturalist 33: 675–724.

Goldring, W. 1927. The oldest known petrified forest. Scientific Monthly 24: 514–529.

Koninck, L.G.D. 1880. Faune du Calcaire Carbonifere de la Belgique, deuxieme partie, Genres Gyroceras, Cyrtoceras, Gomphoceras, Orthoceras, Subclymenia et Goniatites. Annales du Musee Royal d‘Histoire Naturelle, Belgique 5: 1–333.

« Prev - Next »