Wooster’s Fossil of the Week: A thoroughly encrusted rugose coral from the Upper Ordovician of southeastern Indiana

April 22nd, 2016

1 Rugosan Exterior 123015It doesn’t look like much, this long lump of gray stone. With a close view you might pick up a hint of a bryozoan or two, but mostly we see rather shabby shades of grey. One of the coolest perks of being a geologist, though, is that you get to use a saw to cut rocks in half to see what’s inside. So that’s what I did with this specimen from the Whitewater Formation (Upper Ordovician) of southeastern Indiana at a site we’ve visited often.

2 Rugosan interior 123015In this cross-section we see first a long, cone-shaped fossil made of white calcite. It is the rugose coral Grewingkia canadensis, one of the most common fossils in the upper part of the Upper Ordovician. This coral in life would have stood upright like an ice cream cone, spreading the tentacles of its polyp to catch very small swimming prey (and maybe to do a bit of symbiotic photosynthesis). The polyp sat in the cup-like cavity on the expanded end of the cone. The coral evidently died on the Ordovician seafloor and toppled over to be encrusted on one side, presumably the one that faced upwards.

3 Coral Bryo Sed BryoThis is a closer view of the cross-section showing the encrustations on the rugose coral skeleton. The image is annotated below.

4 Coral Bryo Sed Bryo annotatedThe coral skeleton in the lower right was first encrusted by a trepostome bryozoan, which you can recognize by the tubes (zooecia) extending perpendicular from the substrate. This bryozoan is thickest on the upwards-facing surface of the coral, and it thins as it wraps around and then colonizes the cryptic space beneath (but not too far). This bryozoan is covered with a layer of sediment which appears to have rapidly cemented in place (a function of Calcite Sea geochemistry). The sediment then is encrusted by a another trepostome bryozoan with long zooecia and several layers.

5 Bryo Sed 123015In this closer view of the second bryozoan you can see that its base is irregular as it grew across the rough cemented sediment surface. In the middle of this view some of the bryozoan zooecia are occupied by dark spots known as brown bodies. These are likely the remains of bryozoan polypides (main parts of the individual zooids) that were sealed into their zooecia by some disturbance. In this case the whitish bit of sediment above the cluster may represent something that settled on the colony, stopping the growth of the zooecia below, and forcing those nearby to grow around it.

6 Borings 123015Moving down the coral skeleton away from its opening we come across borings drilled down through the coral skeleton (the white mass at the bottom of the image). The conical, large boring is filled with golden crystals of the mineral dolomite, which were formed long after burial. The shape of this boring is unusual. Typical borings in these corals have straight parallel sides, but this boring is cone-shaped. We’ll see if we can find more like it to get a better idea of its shape and distribution.

This week’s fossil, then, is a demonstration of the hidden wonders sometimes found in even the dullest of grey rocks!

 

Wooster’s Fossil of the Week: An atrypid brachiopod from the Devonian of Spain

April 15th, 2016

1 Atrypid dorsal Lr Couvinian M Dev El Pical Leon SpainOur featured fossil this week is another gift from brachiopod enthusiast Clive Champion of England. This fine specimen of Atrypa sp. was collected from the Middle Devonian (Lower Couvinian) exposed at El Pical, Leon, Spain. Atrypa is the emblematic genus of the atrypid brachiopods, which were common in the Devonian around the world. They were also prominent in the Late Ordovician of the Cincinnati region, as seen here and here. We are looking at the dorsal valve in the above view.

2 Atrypid spiraliaThis particular specimen is not notable for its special beauty (it is, after all, exfoliated and a bit misshapen), but for the view it provides of an internal feature: the spiral brachidium, sometimes called the spiralia. This was a ribbon of calcite that supported the lophophore, a tentacular apparatus used in filter-feeding. We see it here because the dorsal valve eroded away, exposing the inside of the shell. Our friends at The Falls of the Ohio have another specimen showing the spiral lophophore of an atrypid.

3 Atrypid ventralThis is a view of the flat ventral valve of our atrypid brachiopod. Inside during life the spiral lophophore would have looked like two springs perpendicular to the floor of this valve.

Thank you again, Clive, for the beautiful and inspiring brachiopods!

References:

Bose, R. 2013. A geometric morphometric approach in assessing paleontological problems in atrypid taxonomy, phylogeny, evolution and ecology, p. 1-9. In: Biodiversity and Evolutionary Ecology of Extinct Organisms. Springer, Berlin and Heidelberg.
Rudwick, M.J.S. 1960. The feeding mechanisms of spire-bearing fossil brachiopods. Geological Magazine 97: 369-383.

 

Wooster’s Fossil of the Week: A crinoid stem internal mold from the Lower Carboniferous of Ohio

April 8th, 2016

crinoid internal mold 1The Biology Department at The College of Wooster is in the midst of a massive move in advance of the construction of the new Ruth Williams Hall of Life Science. The staff has been combing through old specimen collections, giving away items they don’t need for teaching or research. Among the objects are occasional fossils they gave to the Geology Department. The above specimen is one of the most curious: a combination internal and external mold of a crinoid stem from the local Lower Carboniferous rocks.

crinoid internal mold lumen copyThis is a closer view of the fossil. It is a cylindrical cavity with faint rings in a regular distribution. (These are external molds of the individual crinoid columnals.) Suspended down the axis is a segmented pillar with a stellate cross-section. (This is the internal mold of the crinoid stem lumen, a central cavity that runs down the center of the stem.) It appears that an iron-rich cement (probably siderite) filled this lumen after the death of the crinoid. The stem fragment was enveloped in a siderite concretion and the calcite stem columnals dissolved away. This leaves us with both an external mold of the stem and an internal mold of its lumen.

Carb stem 1For comparison, this is a crinoid stem fragment in its original calcite. It was found in a local Carboniferous limestone.

Carb stem 2Here are cross-sections of the same stems showing sediment-filled stellate lumens in their centers.

Wooster’s Fossils of the Week: An encrusted and bored coral (maybe) from the Upper Ordovician of southeastern Indiana (Part II)

April 1st, 2016

6 Tetradium cavernLast week we looked at a dull gray rock found in a roadcut in southeastern Indiana near the town of Liberty. It is from the Saluda Formation (Upper Ordovician), a thin unit that was likely deposited in very shallow, lagoonal waters along the Cincinnati Arch. We know that it is primarily a platter formed by the mysterious fossil Tetradium, and that it is encrusted with a trepostome bryozoan that was infested by some sort of soft-bodied encruster on its surface, forming the trace fossil Catellocaula vallata. Now we’re examining the wonders revealed by cutting this rock in half. Above we see the surprising and spectacular geode that it is, with calcite crystals surrounding a dark cavity. Let’s see what the fossils look like when polished and magnified.

7 LongitudinalCrossTetraThe orangish, irregular patch in the lower half of the section above is the crystalline calcite near the center of the rock. The sediment-filled tubes in the top half are of the Tetradium specimen. Note that the walls of the tubes are blurry and indistinct, and that they fade and disappear into the calcite crystals below. This is apparently because the skeleton of Tetradium was made of aragonite, an unstable form of calcium carbonate. It is likely that the aragonitc, tubular skeleton of Tetradium dissolved away in the center of this encrusted mass, forming the cavity that later filled with secondary calcite crystals. The remaining tubes were apparently preserved as ghostly molds by infillings of calcitic mud that didn’t dissolve.

8 TetracrossIn this section we are cutting the Tetradium tubes perpendicularly, rather than the longitudinal cuts we saw before. The cross-sections of the tubes show a four-part symmetry, which adds to the mystery of this group. (This is where the name “Tetradium” comes from.) It has been called a chaetetid sponge (as in Termier and Termier, 1980); a “calcareous filamentous florideophyte [red] alga” (Steele-Petrovich 2009a, 2009b, 2011; she renamed it Prismostylus), and most commonly a coral of some sort (as in Wendt, 1989). I now know enough about chaetetids to say that it is not in that group. Chaetetid tubes are not aragonitic, do not show tetrameral symmetry, and have diaphragms (horizontal floors). The corals of the Ordovician are decidedly calcitic, not aragonitic, and they too have internal features in their tubes not seen here. The four-part symmetry, though, is something you see in the coral’s phylum, Cnidaria, so there is that vague resemblance. The red algal affinity strongly urged by Steele-Petrovich may be our best diagnosis for the place of Tetradium.

9 BryoTetra1On top of the tubes of Tetradium is the encrusting trepostome bryozoan. Its tubes (zooecia) are made of stable calcite, so they are well preserved compared to the aragonite tubes of Tetradium below it. Note that the bryozoan is made of two layers. One colony died or went into some sort of remission, and another of the same species grew across it. The second colony could have budded somewhere from the first colony.

10 BrownBodies122915This closer view of the bryozoan section shows details of the zooecia, including the horizontal diaphragms inside. The dark spots at the tops of the zooecia are brown bodies, the remains of polypides preserved here in clear calcite cement. (We’ve seen brown bodies before in this blog.) They likely represent some sort of traumatic event in the life of this bryozoan when this part of the colony essentially shut down and was covered with sediment.

11 Gypsumflower122915Finally, there is a mineralogy story here too! Attached to the dog-tooth calcite spar in the center of this geode is this tiny gypsum flower. The gypsum crystals are white and very delicate. The dark needles among them are mysterious. Dr. Meagen Pollock and her students will subject them to x-ray diffraction in her lab later this semester. I’ll report the results here.

It is a simple tool, the rock saw. For geologists and paleontologists, it is one of our essential instruments for discovery.

References:

Hatfield, C.B. 1968. Stratigraphy and paleoecology of the Saluda Formation (Cincinnatian) in Indiana, Ohio, and Kentucky. Geological Society of America Special Papers 95: 1-30.

Li, Q., Li, Y. and Kiessling, W. 2015. The first sphinctozoan-bearing reef from an Ordovician back-arc basin. Facies 61: 1-9.

Palmer, T.J. and Wilson, M.A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31: 939-949.

Steele‐Petrovich, H M. 2009a. The biological reconstruction of Tetradium Dana, 1846. Lethaia 42: 297-311.

Steele‐Petrovich, H M. 2009b. Biological affinity, phenotypic variation and palaeoecology of Tetradium Dana, 1846. Lethaia 42: 383-392.

Steele-Petrovich, H.M. 2011. Replacement name for Tetradium DANA, 1846. Journal of Paleontology 85: 802–803.

Termier, G. and Termier, H. 1980. Functional morphology and systematic position of tabulatomorphs. Acta Palaeontologica Polonica 25: 419-428.

Wendt, J. 1989. Tetradiidae — first evidence of aragonitic mineralogy in tabulate corals. Paläontologische Zeitschrift 63: 177–181.

 

Wooster’s Fossils of the Week: An encrusted and bored coral (maybe) from the Upper Ordovician of southeastern Indiana (Part I)

March 25th, 2016

1 TopEncrustedTetradiumI found this lump of a gray rock in southeastern Indiana along a highway near the town of Liberty. It is from the Saluda Formation (Upper Ordovician), a thin unit that was likely deposited in very shallow, lagoonal waters along the Cincinnati Arch. It is not especially notable in this view. I intend to show you the wonders that can be revealed in such dull rocks by simply sawing them in half. First, though, let’s have a look at the outside. Inn the view above you can see on the left side a large trepostome bryozoan with some irregular holes in it. We’ll come back to that.

2 BaseEncrustedTetradiumFlipping the rock over we find that most of it is a fibrous fossil shaped like a dinner plate with limestone matrix and encrusting bryozoans covering most of the center.

3 CloserTubesTetraA closer view of the fibrous part shows thousands of thin tubes radiating out from the center of the plate. This is the Ordovician fossil known as Tetradium. It is strange and mysterious enough that we will use the next Fossil of the Week blog post to describe it. It has been called a chaetetid sponge (as in Termier and Termier, 1980); a “calcareous filamentous florideophyte alga” (Steele-Petrovich 2009a, 2009b, 2011; she renamed it Prismostylus), and most commonly a coral of some sort (Wendt, 1989). Interesting range of options! We’ll explore later.

4 Catellocaula122915Now, back to the trepostome bryozoan visible on the top surface. There are three kinds of holes on this specimen. The smallest are the zooecia of the bryozoan itself, each of which would have hosted a zooid (a bryozoan individual). They are the background texture of the fossil. The large holes above are a bioclaustration structure that Time Palmer and I named in 1988 as Catellocaula vallata (little chain of walled  pits). It is explained thoroughly in one of the early Fossil of the Week posts. Basically they are pits formed when the bryozoan grew up and around some sort of soft-bodied colonial organism sitting on top of the surface, forming these embedment structures connected together by tunnels at their bases.

5 Trypanites122915A third kind of hole in this bryozoan is a boring cut down into its skeleton. These are the trace fossil Trypanites, formed when some kind of filter-feeding worm bored straight into the calcite zoarium (colonial skeleton) to make a protective home, as many polychaete worms do today.

Now let’s cut this stone in half —

6 Tetradium cavernInside we find a wonderful cavern of crystals — a geode! The crystals are mostly calcite, with dog-tooth spar lining the cavity and blocky spar replacing large parts of the Tetradium skeleton. There’s a story here, and it will be told in the next Fossil of the Week post!

References:

Hatfield, C.B. 1968. Stratigraphy and paleoecology of the Saluda Formation (Cincinnatian) in Indiana, Ohio, and Kentucky. Geological Society of America Special Papers 95: 1-30.

Li, Q., Li, Y. and Kiessling, W. 2015. The first sphinctozoan-bearing reef from an Ordovician back-arc basin. Facies 61: 1-9.

Palmer, T.J. and Wilson, M.A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31: 939-949.

Steele‐Petrovich, H M. 2009a. The biological reconstruction of Tetradium Dana, 1846. Lethaia 42: 297-311.

Steele‐Petrovich, H M. 2009b. Biological affinity, phenotypic variation and palaeoecology of Tetradium Dana, 1846. Lethaia 42: 383-392.

Steele-Petrovich, H.M. 2011. Replacement name for Tetradium DANA, 1846. Journal of Paleontology 85: 802–803.

Termier, G. and Termier, H. 1980. Functional morphology and systematic position of tabulatomorphs. Acta Palaeontologica Polonica 25: 419-428.

Wendt, J. 1989. Tetradiidae — first evidence of aragonitic mineralogy in tabulate corals. Paläontologische Zeitschrift 63: 177–181.

Wooster’s Fossils of the Week: A Jurassic seafloor assemblage

March 18th, 2016

1 DSC_0184 copyImages from fieldwork this week. These are all fossils exposed on a single bedding plane in the Matmor Formation (Middle Jurassic, Callovian) exposed in Makhtesh Gadol. I found them many years ago while working through the stratigraphy near the top of the formation. They present a vignette of life in a shallow carbonate Jurassic sea. They are so well preserved you can almost feel the gentle waves and hear the squawks of the pterosaurs wheeling above. In the top image we have my favorite of the set: A gastropod shell in the middle surrounded by mytilid bivalves. The bivalves were no doubt attached to the gastropod by their thin byssal threads, holding them in place in the choppy waters. The preservation is remarkable. All these shells are calcitized, but retain their ornamentation. They are exposed on a bank of a wadi, and so they have been lightly etched from the matrix by sandy water during floods.

2 DSC_0180 copyJust to show the gastropod-bivalve association is not a fluke of preservation, here’s another set. On this bedding plane are four such assemblages.

3 DSC_0178 copyHere’s another gastropod, this one with heavy spines.

4 DSC_0179 copyA high-spired gastropod is on the left, with a mytilid in side-view on the right.

5 DSC_0181 copyAnother gastropod to end the set. These are just a few of the many such fossils exposed on this bedding plane of the Matmor Formation.

Wooster’s Fossil of the Week: A mystery from the Middle Devonian of Ontario, Canada

March 11th, 2016

Hungry Hollow 1This week’s fossil is a strange one. Mr. Darrell Ellis collected the above tiny specimen from the Hungry Hollow Member (Middle Devonian) at the famous Hungry Hollow location near Arkona, Ontario. (He also took this excellent photograph.) In the classic way exploratory paleontology works, he contacted an expert, my friend Olev Vinn at the University of Tartu in Estonia. Olev was puzzled, having never seen anything like it, so he sent the image to me. I was baffled. Darrell next sent me the actual specimen, which I examined an photographed. I could see that it is a calcitic spiral, flattened tube extending from a discoidal holdfast at its proximal end. I then passed images on to another buddy and expert, Paul Taylor at the Natural History Museum in London. The form is new to Paul as well, and he suggested it might be an odd microconchid, a twisty tube-dweller now extinct. That made sense, even if no microconchid like this has ever been described. We know that some microconchids did grow tubes extended upwards (such as Helicoconchus from the Permian of Texas, described earlier in this blog). Since we need to see the microstructure of the calcitic tube to support the hypothesis that this is a microconchid, I then sent the specimen to yet another friend, Michał Zatoń at the University of Silesia in Poland. He will examine the specimen with a scanning electron microscope (SEM). This is citizen science at work. Thank you, Darrell, for donating this specimen to science. It is also a reflection of how small scientific networks exchange ideas, information and specimens — Olev, Paul and Michał have been featured in this blog many times; we are old friends and colleagues with similar interests and diverse skill sets (and equipment!).

Hungry Hollow 2This is a closer view of the top of the spiral. We hope that Michał will be able to see the microstructure of the calcite on these broken surfaces.

Hungry Hollow 3This is the simple holdfast of this specimen. The tube began to grow  upwards very early in its ontogeny.

If you have ever seen a specimen like this before, whole or partial, please let me know in the comments or by email. We have only this one specimen that is clearly “new to science”. Other collectors and paleontologists may have bits of this they did not recognize before.

Again, thank you to Darrell Ellis for his sharp eyes, eagerness to contact experts, and generosity!

References:

Wilson, M.A., Vinn, O. & Yancey, T.E. 2011. A new microconchid tubeworm from the Artinskian (Lower Permian) of central Texas, USA. Acta Palaeontologica Polonica 56: 785-791.

Zatoń, M. & Vinn, O. 2011. Microconchids and the rise of modern encrusting communities. Lethaia 44:5-7.

Zatoń, M., Wilson, M.A. and Vinn, O. 2012. Redescription and neotype designation of the Middle Devonian microconchid (Tentaculita) species ‘Spirorbis’ angulatus Hall, 1861. Journal of Paleontology 86:417-424.

 

Wooster’s Pseudofossils of the Week: Shatter cones from southern Ohio

March 4th, 2016

Real shatter cones 585This brief post is a correction of a previous entry. Last year I showed what I thought were shatter cones collected many years ago in Adams County, Ohio, by the late Professor Frank L. Koucky of The College of Wooster. James Chesire commented on the post and said it was more likely the specimens were cone-in-cone structures produced by burial diagenesis not bolide impacts. When he sent me the photo above of real shatter cones from the Serpent Mound impact region in southern Ohio, I knew he was correct. Shatter cones have distinctive radiating, longitudinal fractures not seen in similar conical structures in limestones. The above shatter cones are in an unknown Ordovician limestone.

Both shatter cones and cone-in-cone structures are nevertheless pseudofossils in that they are both sometimes confused with organic structures like corals and chaetetids. I shall never mix them up again! Thanks for the correction, James.

References:

Carlton, R.W., Koeberl, C., Baranoski, M.T. and Schumacher, G.A. 1998. Discovery of microscopic evidence for shock metamorphism at the Serpent Mound structure, south-central Ohio: confirmation of an origin by impact. Earth and Planetary Science Letters 162: 177-185.

Dietz, R.S. 1959. Shatter cones in cryptoexplosion structures (meteorite impact?). The Journal of Geology 67: 496-505.

Sagy, A., Fineberg, J. and Reches, Z. 2004. Shatter cones: Branched, rapid fractures formed by shock impact. Journal of Geophysical Research 109: B10209.

Shaub, B.M. 1937. The origin of cone-in-cone and its bearing on the origin of concretions and septaria. American Journal of Science 203: 331-344.

Wooster’s Fossil of the Week: A low-spired, battle-worn trochid gastropod from the Pliocene of Cyprus

February 26th, 2016

1 Gibbula Risso, 1826 apexThis shell looks like a cinnamon roll. It is another product of the 1996 Wooster-Keck expedition to Cyprus with Steve Dornbos (’97) and me. Like the rest of the Cypriot specimens on this blog, it is from the Nicosia Formation (Pliocene) exposed on the Mesaoria Plain in the center of the island. This specimen comes from the Coral Reef locality described in Dornbos and Wilson (1999). We are looking at a well-preserved specimen of the herbivorous gastropod Gibbula Risso, 1826. (I can’t fit it into any known species within the genus.)
2 Gibbula Risso, 1826 sideIn this side view the growth lines are evident (they are parallel to the aperture; the thin ribs following the whorls are ornamentation), as are a couple of shallow, circular pits drilled by some unsuccessful predator. That predator could have been another gastropod or even an octopus. The pits are known by the trace fossil name Oichnus.

Those growth lines are interesting in  this genus. Schöne et al. (2007) studied a species of modern Gibbula and determined that they formed “microgrowth lines” in association with tidal cycles, forming “distinct fortnight bundles of microgrowth increments and lines”. We would need to section this shell and examine it microscopically to see such patterns.

3 Gibbula Risso, 1826 baseHere is the basal view of our Gibbula specimen.

4 RissoThe genus Gibbula was named and described by Giuseppe Antonio Risso (1777-1845), called Antoine Risso, was a productive Italian (more or less; he later can be considered French) naturalist. He was born in the city of Nice, then in the Duchy of Savoy. In 1792, soon after the French Army occupied Nice, Risso became a pharmacist’s apprentice, which encouraged his interest in medicinal botany. Risso was also a pioneering mountaineer in the Alps and other European ranges. He published several books on invertebrates, fish and plants. The work most relevant to us is his 1826 tome entitled: Histoire naturelle des principales productions de l’Europe Méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. Risso’s Dolphin is named after him.

References:

Donnarumma, L., Bruno, R., Terlizzi, A. and Russo, G.F. 2015. Population ecology of Gibbula umbilicaris and Gibbula ardens (Gastropoda: Trochidae) in a Posidonia oceanica seagrass bed. Italian Journal of Zoology, DOI: 10.1080/11250003.2015.1073377

Dornbos, S.Q. and Wilson, M.A. 1999. Paleoecology of a Pliocene coral reef in Cyprus: Recovery of a marine community from the Messinian Salinity Crisis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 213: 103-118.

Risso, A. 1826. Histoire naturelle des principales productions de l’Europe Méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. Paris: F.G. Levrault. Vol. 4: IV, 1-439, 12 pls.

Schöne, B.R., Rodland, D.L., Wehrmann, A., Heidel, B., Oschmann, W., Zhang, Z., Fiebig, J. and Beck, L. 2007. Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, North Sea): life-history traits and utility as a high-resolution environmental archive for kelp forests. Marine Biology 150: 1237-1252.

Williams, E.E. 1964. The growth and distribution of Gibbula umbilicalis (da Costa) on a rocky shore in Wales. The Journal of Animal Ecology 33: 433-442.

Wooster’s Fossil of the Week: A conid gastropod from the Pliocene of Cyprus

February 19th, 2016

Conus pelagicus Epsilos 585Cyprus again for this week’s fossil. This is a nearly complete shell of the predatory snail Conus pelagicus Brocchi 1814 found at the Epsilos exposure of the Nicosia Formation (Pliocene) on the Mesaoria Plain of central Cyprus by Steve Dornbos (’97) and me in 1996. In life this species no doubt had an intricate shell color pattern, as their cousins do today.

The taxonomic intricacies of the genus Conus are far beyond the scope of a mere blog entry, so I’ll simply link to a list of associated genera, subgenera and synonymies. Conus as an organism is fantastic. These are venomous predators famous for shooting radular teeth loaded with very effective toxins. Some species can kill a human in less than five minutes. No worries, though — the venom contains analgesic compounds so there is little pain. The best way to demonstrate the extraordinary killing process used by Conus is to look at a video. You’ll never look at snails the same way again.
BrocchiImageConus pelagicus was originally described by Giovanni Battista Brocchi in 1814. We met him in a previous blog entry, so much of this information is repeated. Brocchi (1772-1826) was an Italian natural historian who made significant contributions to botany, paleontology, mineralogy and general geology. He was born in Bassano del Grappa, Italy, and studied law at the University of Padova. He liked mineralogy and plants much better than lawyering, though, and became a professor in Brescia. His work resulted in an appointment as Inspector of Mines in the new kingdom of Italy. He famously said, “The science of fossil shells is the first step towards the study of the earth.”

Brocchi wrote the first thorough geological assessment of the Apennine Mountains, and he included in it a remarkable systematic study of Neogene fossils. He compared these fossils to modern animals in the Mediterranean — a very progressive thing to do at the time.
Brocchi plate 122915Above are drawings made by Brocchi of the conid (and a couple cypraeid) fossils he found in the Apennines during his extensive study published in 1814. Note that in the Continental fashion still followed today, the shells are figured aperture-up. Americans and the rest of the English-speaking world orient them in the proper way. Figures 11a, b and c, though, are oriented in the opposite direction, maybe to fill the space efficiently.

Brocchi was an adventurous traveler, but it eventually did him in. He died in Khartoum in 1826, a “victim of the climate” and a martyr for field science.

References:

Brocchi, G.B. 1814. Conchiologia fossile subapennina con osservazioni geologiche sugli Apennini e sul suolo adiacente. Milano Vol. I: pp. LXXX + 56 + 240; Vol. II, p. 241-712, pl. 1-16.

Cowper Reed, F.R. 1935. Notes on the Neogene faunas of Cyprus, III: the Pliocene faunas. Annual Magazine of Natural History 10 (95): 489-524.

Cowper Reed, F.R. 1940. Some additional Pliocene fossils from Cyprus. Annual Magazine of Natural History 11 (6): 293-297.

Dornbos, S.Q. and Wilson, M.A. 1999. Paleoecology of a Pliocene coral reef in Cyprus: Recovery of a marine community from the Messinian Salinity Crisis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 213: 103-118.

« Prev - Next »