Wooster’s Fossil of the Week: A mysterious sponge (Late Ordovician of Ohio)

February 5th, 2012

I’ve been collecting and studying fossils from the Upper Ordovician of the Cincinnati region for three decades now, but I’ve never seen another specimen like the one pictured above. An amateur collector, Howard Freeland, generously donated this rock to Wooster late last year. He found it in Cincinnatian limestones cropping out in Brown County, Ohio.

At first Howard understandably thought he had found fish bones, which would be extraordinary for this age of rock and place of deposition. He took the slab to the Smithsonian Institution for identification by a vertebrate paleontologist. Not bones, was the answer, but they didn’t know how else to classify these finger-like fossils. When Howard showed them to me I suggested they were fossil sponges, and so here we are. I could be wrong so I hope the web community has some other ideas.

I believe these are sponge pieces because they were originally hollow (now they are filled with sediment), fibrous in structure, and had small holes irregularly preserved on their surfaces. They look in texture like the hexactinellid sponge Brachiospongia, but they do not have their distinctive thick extensions and radiating shape.

Small, irregular holes on fossil surface. They could be sponge incurrent pores. I would expect them to be more regular, though.

My search of the Ordovician sponge literature (what there is of it) has not turned up anything similar. I’ve gone to the usual websites for the Cincinnatian (like Steve Holland’s excellent Cincinnatian fossil catalog and the Dry Dredger’s webpages), but no luck.

Sometime during the existence of this webpage someone will come across these images and post their solution in the comments. I look forward to learning from them!

Reference:

Carrera, M.G. and Rigby, J.K. 1999. Biogeography of Ordovician sponges. Journal of Paleontology 73: 26-37.

Wooster’s Fossils of the Week: Bivalve escape trace fossils (Devonian and Cretaceous)

January 29th, 2012

It is time again to dip into the wonderful world of trace fossils. These are tracks, trails, burrows and other evidence of organism behavior. The specimen above is an example. It is Lockeia James, 1879, from the Dakota Formation (Upper Cretaceous). These are traces attributed to infaunal (living within the sediment) bivalves trying to escape deeper burial by storm-deposited sediment. If you look closely, you can see thin horizontal lines made by the clams as they pushed upwards. These structures belong to a behavioral category called Fugichnia (from the Latin fug for “flee”). They are excellent evidence for … you guessed it … ancient storms.
The specimens above are also Lockeia, but from much older rocks (the Chagrin Shale, Upper Devonian of northeastern Ohio). Both slabs show the fossil traces preserved in reverse as sediment that filled the holes rather than the holes themselves. These are the bottoms of the sedimentary beds. We call this preservation, in our most excellent paleontological terminology, convex hyporelief. (Convex for sticking out; hyporelief for being on the underside of the bed.)

The traces we know as Lockeia are sometimes incorrectly referred to as Pelecypodichnus, but Lockeia has ichnotaxonomic priority (it was the earliest name). Maples and West (1989) sort that out for us.
Uriah Pierson James (1811-1889) named Lockeia. He was one of the great amateur Cincinnatian fossil collectors and chroniclers. In 1845, he guided the premier geologist of the time, Charles Lyell, through the Cincinnati hills examining the spectacular Ordovician fossils there. He was the father of Joseph Francis James (1857-1897), one of the early systematic ichnologists.

References:

James, U.P. 1879. The Paleontologist, No. 3. Privately published, Cincinnati, Ohio. p. 17-24.

Maples, C.G. and Ronald R. West, R.R. 1989. Lockeia, not Pelecypodichnus. Journal of Paleontology 63: 694-696.

Radley, J.D., Barker, M.J. and Munt, M.C. 1998. Bivalve trace fossils (Lockeia) from the Barnes High Sandstone (Wealden Group, Lower Cretaceous) of the Wessex Sub-basin, southern England. Cretaceous Research 19: 505-509.

Wooster’s Fossil of the Week: A scale tree (Late Carboniferous of Ohio)

January 8th, 2012

We haven’t had a plant fossil in this blog for awhile. Lepidodendron Sternberg 1820, pictured above, is one of the most common fossils brought to me in Wooster by amateur collectors. It is abundant in the Upper Carboniferous (Pennsylvanian) sandstones, shales and coals in this area. People sometimes call them “fossil snakes” because they are cylindrical and appear to have scales. Appropriately, the extinct plants they represent are called “scale trees” (the literal meaning of the genus name). The fossil above is an external mold of the trunk of this tree-like organism.
A plant as large and complex as Lepidodendron has many distinctive components that are often found separate from each other in the fossil record. These parts were given their own scientific names and only relatively recently were reunited into the genus Lepidodendron. The specimen above, for example, is traditionally known as Stigmaria and represents the roots of Lepidodendron.

From Book 15 of the 4th edition of Meyers Konversationslexikon (1885-90; figure 10). Lepidodendron is the tall tree on the left.

Diagrams of the trunk leaf scars (from Lesquereux, 1879).

Lepidodendron was up to 30 meters high in Carboniferous forests. It was tree-like, branching at the top and with a trunk covered with leaf scars. They are often called “club mosses” but are really related to modern quillworts (Isoëtes). They reproduced by spores, probably only once before death.
Lepidodendron was named and described by Kaspar Maria von Sternberg (1761-1838), a Czech naturalist who virtually founded the field of paleobotany. He was a philosophy student at the University of Prague when he began to collect fossils, minerals and plants, most of which eventually formed the nucleus of the National Museum in Prague. Oddly enough, he was also a theologian and received ordination in the Catholic church. He gave up his churchly duties early, though, and worked as a full-time scientist at various institutions in Central Europe. His description of Lepidodendron came from his deep studies of the fossils associated with coal mines in Bohemia.

References:

Lesquereux, L. 1879. Atlas to the coal flora of Pennsylvania and of the Carboniferous Formation throughout the United States. Second Geological Survey of Pennsylvania, Report of Progress.

Sternberg, K.M., von. 1820-1838. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt.

A Tale of Two Museums: Part 1 — The Cleveland Museum of Natural History

December 6th, 2011

Last week I had the marvelous opportunity to visit two very different museums with Wooster Geologists. This is the first of two posts with short vignettes of the memorable sights and sounds.

The first museum was the Cleveland Museum of Natural History. Greg Wiles and his Climate Change class invited me to accompany them to see the visiting climate change exhibit. It was an excellent display of the latest ideas about changing climates, including accurate accounts of the evidence, controversies and possible solutions to the problem of anthropogenic global warming and its associated troubles. It was a pleasure to see this presentation with Greg because of his deep and very current knowledge of the science and politics.

Since the above links give plenty of information about the museum and climate change exhibit, I’ll just highlight two features in front of the museum I found very interesting:

The large sundial above represents the history of life by geological periods. Note the beautiful ammonite fossil model as part of the gnomon (the portion that casts the shadow).

Each segment of the horizontal portion of the sundial is a geological period. Can you tell which periods are shown here?

Finally, I think this sculpture in the front garden entitled “Venus From The Ice Field” by Charles Herndon is ingenious. It is carved from a granite boulder found in the local glacial till.

My next post will be about the second museum — a very different place!

Wooster’s Fossil of the Week: A stromatoporoid (Middle Devonian of central Ohio)

October 30th, 2011

Stromatoporoids are very common fossils in the Silurian and Devonian of Ohio and Indiana, especially in carbonate rocks like the Columbus Limestone (from which the above specimen was collected). Wooster geologists encountered them frequently on our Estonia expeditions in the last few years, and we worked with at least their functional equivalents in the Jurassic of Israel (Wilson et al., 2008).

For their abundance, though, stromatoporoids still are a bit mysterious. We know for sure that they were marine animals of some kind, and they formed reefs in clear, warm seas rich in calcium carbonate (DaSilva et al., 2011). Because of this tropical habit, early workers believed they were some kind of coral, but now most paleontologists believe they were sponges. Stromatoporoids appear in the Ordovician and are abundant into the Early Carboniferous. The group seems to disappear until the Mesozoic, when they again become common with the same form and life habits lasting until extinction in the Late Cretaceous (Stearn et al., 1999).

The typical stromatoporoid has a thick skeleton of calcite with horizontal laminae, vertical pillars, mounds on the upper surface called mamelons, and dendritic canals called astrorhizae shallowly inscribed on the mamelons. These astrorhizae are the key to deciphering what the stromatoproids. They are very similar to those on modern hard sponges called sclerosponges. Stromatoporoids appear to be a kind of sclerosponge with a few significant differences (like a calcitic instead of an aragonitic skeleton).

Stromatoporoid anatomy from Boardman et al. (1987).

Top surface of a stromatoporoid from the Columbus Limestone showing the mamelons.

There is considerable debate about whether the Paleozoic stromatoporoids are really ancestral to the Mesozoic versions. There may instead be some kind of evolutionary convergence between two groups of hard sponges. The arguments are usually at the microscopic level!

The stromatoporoids were originally named by Nicholson and Murie in 1878. This gives us a chance to introduce another 19th Century paleontologist whose name we often see on common fossil taxa: Henry Alleyne Nicholson (1844-1899). Nicholson was a biologist and geologist born in England and educated in Germany and Scotland. He was an accomplished writer, authoring several popular textbooks, and a spectacular artist of the natural world. Nicholson taught in many universities in Canada and Great Britain, finally ending his career as Regius Professor of Natural History at the University of Aberdeen.

Henry Alleyne Nicholson (1844-1899) from the University of Aberdeen museum website.

References:

Boardman, R.S., Cheetham, A.H. and Rowell, A.J. 1987. Fossil Invertebrates. Wiley Publishers. 728 pages.

DaSilva, A., Kershaw, S. and Boulvain, F. 2011. Stromatoporoid palaeoecology in the Frasnian (Upper Devonian) Belgian platform, and its applications in interpretation of carbonate platform environments. Palaeontology 54: 883–905.

Nicholson, H.A. and Murie, J. 1878. On the minute structure of Stromatopora and its allies. Linnean Society, Journal of Zoology 14: 187-246.

Stearn, C.W., Webby, B.D., Nestor, H. and Stock, C.W. 1999. Revised classification and terminology of Palaeozoic stromatoporoids. Acta Palaeontologica Polonica 44: 1-70.

Wilson, M.A., Feldman, H.R., Bowen, J.C. and Avni, Y. 2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 263: 24-29.

Wooster’s Fossil of the Week: a medullosalean pteridosperm (Upper Carboniferous of northeastern Ohio)

October 23rd, 2011

It is time we had another fossil plant in this series. The above specimen is Neuropteris ovata Hoffmann 1826, a relatively common bit of foliage in the Upper Carboniferous of North America. This is a pteridosperm, more commonly known as a seed fern. They weren’t really ferns at all but fern-like plants with some of the first real seeds. They are usually reconstructed as trees, but were also known to be bushy or even like climbing vines.

The taxonomy (naming system) of fossil plants can be very complicated because different plant parts were given different names at different times. A single plant species, then, could have a list of names for its foliage, bark, roots, seeds, etc. The name Neuropteris usually thus refers to the leaves of this particular pteridosperm.

Neuropteris ovata is famous for its use in studies of the distribution of stomata on its leaf surfaces. Stomata, sometimes called guard cells, regulate gas exchange and moisture retention in vascular land plants. The density of stomata on N. ovata leaves in the Late Carboniferous may reflect changes in carbon dioxide levels and the expansion and contraction of tropical forests (Cleal et al., 1999).

Neuropteris ovata was named by Friedrich Hoffmann (1797-1836), a Professor of Geology at the University of Berlin. I wish I knew more about him because not only did he do considerable paleobotanical research, he was also well known for his work on volcanoes in Italy. You don’t see that combination very often!

References:

Beeler, H.E. 1983. Anatomy and frond architecture of Neuropteris ovata and N. scheuchzeri from the Upper Pennsylvanian of the Appalachian Basin. Canadian Journal of Botany 61: 2352-2368.

Cleal, C.J., James, R.M. and Zodrow, E.L. 1999. Variation in stomatal density in the Late Carboniferous gymnosperm frond Neuropteris ovata. Palaios 14: 180-185.

Hoffmann, F. 1826. Untersuchungen über die Pänzen-Reste des Kohlengebirges von Ibbenbühren und von Piesberg bei Osnabrück. Archiv für Bergbau und Hüttenwesen 13: 266-282.

Zodrow, E.L. and Cleal, C.J. 1988. The structure of the Carboniferous pteridosperm frond Neuropteris ovata Hoffman. Palaeontographica Abteilung Palaophytologie 208: 105-124.

Exploring the Silica Formation (Middle Devonian) in Northwestern Ohio

October 22nd, 2011

PAULDING, OHIO–There’s nothing like the stirring rings of 50 geologic hammers in the morning. Today I was a guest of the North Coast Fossil Club and my friend Brian Bade in a quarry exposing the Middle Devonian limestones and shales. There was frost on the ground when we began, but soon the sun rose and made it a delightful fall day of fossil collecting. Thank you to Brian and the NCFC for inviting me on their trip. I’ve spoken twice to the NCFC and they have been good friends since. It was my first visit to the highly fossiliferous Silica Formation (Middle Devonian), and I came away with a bag of treasures for my classes and research projects. Thank you also to the Lafarge Cement Quarry managers for facilitating this productive experience.

The Silica Formation is very well known for its abundant fossils, especially brachiopods, corals, trilobites, and bryozoans. I’ve wanted to examine the Silica for a long time because it has produced significant material for the hederelloid and microconchid projects I have been working on with my Polish, English and Estonian colleagues. For the first time I was able to collect my own specimens of each group, and to see the fossils in their geological context.

A quarry visit always starts with a sign-in process and a reading of the rules. Note the required reflective vests and hard hats. (I was very impressed that everyone knew my name until I realized it was emblazoned on the front of my helmet.)

A wall of the quarry. The thick gray unit is the Dundee Limestone; the thin dark sequence of mixed shales and limestones at the top is the Silica Formation. Both are Middle Devonian in age (Givetian).

Most of us figured out pretty quickly that the best places to collect fossils were in the large weathered blocks in irregular piles well away from the quarry walls. The soft Silica Formation shales erode quickly, releasing the hard calcitic fossils. Climbing around on these rocks is an acquired geological skill.

My paleontology students can tell even from this distant view what kind of coral this is in the top of the Dundee Limestone. (At least they better be able to by now!)

They can also identify the order to which this beautiful and delicate bryozoan belongs, I’m certain.

Bivalves and the spiriferid brachiopod Orthospirifer in the Silica Formation.

Finally, they tend to be overlooked in the excited search for trilobites and other shelled creatures, but there are also spectacular trace fossils in the Dundee Limestone.

 

 

Fossils in the Wild: Invertebrate Paleontology Field Trip

September 11th, 2011

CAESAR CREEK LAKE, OHIO–The 2011 Invertebrate Paleontology class had a productive field trip on a beautiful Ohio day. Thunderstorms roamed the state, but we saw them only when we were comfortably on the bus.

We worked in the emergency spillway at Caesar Creek Lake in southwestern Ohio, roughly halfway between Cincinnati and Dayton. This site is maintained by the US Army Corps of Engineers as a fossil-collecting preserve. You obtain a free permit at the visitor center, agree to follow the rules, and extraordinary fossils await your picking. (Last time I was here it was very cold.)

The fossils are in the Arnheim, Waynesville, Liberty and Whitewater Formations of the Richmondian Stage in the Cincinnatian Series of the Ordovician System. These are shaly units with shell-rich limestones formed during storms. Brachiopods, bryozoans, crinoids, trilobites, clams, snails, nautiloids, corals — the whole Ordovician menagerie. Perfect for student collections and our later exercises.

Brachiopod-rich storm layer in the Liberty Formation. Note the circular bryozoan attachment.

Bryozoan colony and brachiopod shell interior from the Waynesville Formation.

Our fancy bus. The design insures that the back seats are rather bouncy.

Last of the summer flower field photos! It was such a beautiful day.

Wooster’s Fossil of the Week: A trilobite hypostome (Upper Ordovician of southern Ohio)

August 21st, 2011

We had a familiar trilobite last week, so this week we’ll look at a poorly-known part of a trilobite: the hypostome. Above is an incomplete forked, conterminant hypostome of the large trilobite Isotelus. (Isotelus, by the way, is the state fossil of Ohio. Do you know your state fossil?)

Hypostome means “under mouth”. On trilobites it is found underneath the cephalon (head) near what we think was the mouth. They are not common in the fossil record. It is obvious from their color and composition that they are part of a trilobite, but most people don’t know about this little plate on the otherwise soft underside (the ventral side) of the animal. The hypostome is important in some new taxonomic schemes for sorting out the trilobites (Fortey, 1990), and they are useful for interpreting a particular trilobite’s feeding habits (Fortey and Owens, 1999).
Trilobite hypostome forms from Wikipedia (via Obsidian Soul). The small green plates are the hypostomes seen against the gray cephalon above. A – Natant: Hypostome not attached to doublure; aligned with front edge of glabella (shown in red broken lines). B – Conterminant: Hypostome attached to rostral plate of doublure. Aligned with front edge of glabella. C – Impendent: Hypostome attached to rostral plate but not aligned with glabella.

The hypostome of Isotelus is attached to the anterior edge of the skeleton (thus “conterminant”) and has two distally-directed prongs (making it “forked”). Hegna (2010) has recently suggested this hypostome with its unusual shape and terraced outer structure may have been used for grinding food rather than serrating it. Turns out our hypostome has a unique form among the common trilobites!

References:

Fortey, R.A. 1990. Ontogeny, hypostome attachment and trilobite classification. Journal of Paleontology 33: 529-576.

Fortey, R.A. and Owens, R.M. 1999. Feeding habits in trilobites. Palaeontology 42: 429–65.

Hegna, T.A. 2010. The function of forks: Isotelus-type hypostomes and trilobite feeding. Lethaia 43: 411-419.

Wooster’s Fossil of the Week: A chain coral (Silurian of Ohio)

June 19th, 2011

For some reason the Fossil of the Week I’ve had the most comments about is the Ordovician honeycomb coral from Indiana. It has an unexpected polygonal symmetry reflected in many other geological materials like desiccation cracks and columnar basalt. So this week’s fossil is another coral with a surprising shape: the chain coral Halysites.

Halysites is a tabulate coral genus originally named by Johann Fischer von Waldheim in 1828. Its corallum (colonial skeleton) consists of long vertical tubes (corallites) laterally attached to each other in ranks so that a cross-section looks like a series of chain links. Each corallite held a single coral polyp (an individual) that collected zooplankton for food. The spaces between the ranks — the empty holes — are called lacunae.

A closer view of the halysitid corallum. This specimen is replaced with silica so the surrounding limestone matrix could be removed by dissolving it in hydrochloric acid.

Halysites lived only in the Ordovician and Silurian (about 480 to 420 million years ago), so it is a rough index fossil for these periods. They were especially common in coral reefs, adding stability because their lacunae filled with sediment making them very difficult to dislodge by currents.

Thin-section of a halysitid coral with limestone matrix still in the star-shaped lacunae.

References:

Motus, M.-A. and Klaamann, E. 1999. The halysitid coral genera Halysites and Cystihalysites from Gotland, Sweden. GFF 121: 81-90.

« Prev - Next »