Wooster’s Fossils of the Week: New tropical Jurassic bryozoan species from southern Israel

December 12th, 2014

1 Hyporosopora nanaWe are pleased to introduce to the world four new species of Jurassic cyclostome bryozoans. In a paper that has just appeared in the Bulletin of Geosciences, Steph Bosch (’14), Paul Taylor and I describe the first tropical Jurassic bryozoan fauna (see Wilson et al., 2015, below; it is open access and a free download). This work was the basis of Steph’s excellent Senior Independent Study thesis, and it could not have been done without Paul’s bryozoan mastery and his scanning electron microscopy skills. We found six bryozoan species in the Matmor Formation (Middle Jurassic, Callovian) exposed in Hamakhtesh Hagadol, southern Israel, four of which are new to science and shown in this post. The image above is a colony of Hyporosopora nana n. sp. attached to a crinoid ossicle.
2 Gonozooid Hyporosopora nanaIdentifying and classifying Jurassic cyclostome bryozoans almost always involves finding the specialized reproductive gonozooids. Here we see a close-up of the gonozooid on H. nana. The ooeciopore (an opening for communication with the water outside) is at the distal end on the right. The species name “nana” means “small” in Latin and refers to the small size of the autozooids (feeding zooids).
3 Hyporosopora negevensisThis is Hyporosopora negevensis n. sp., named after its type location in the Negev. On the right side of the colony you can see its characteristic boomerang-shaped gonozooid.
4 Idmonea snehiIdmonea snehi n. sp. is named after my good friend and superb geologist Amihai Sneh of the Geological Survey of Israel. Amihai has now “retired” officially after a distinguished career, but continues to work. He is the lead author of the new Geological Map of Israel. Turns out I have no images of him with his face to the camera.
5 Idmonea snehi colorThis is a color optical image of I. snehi to show what these fossils look like outside the SEM. The wiggly lines you see in the background are where the host crinoid columnals articulate in the stem. (The crinoid is Apiocrinites negevensis.) I. snehi has the earliest example of lateral branching in a post-Paleozoic cyclostome, and is now the only published example of lateral branching in any Jurassic bryozoan.
6 Microeciella yoaviMicroeciella yoavi n. sp. (above) has a gonozooid with a spherical brood chamber, visible near the center of the image. It is named after another good friend and colleague, Yoav Avni of the Geological Survey of Israel. Yoav has been my field companion for over a decade now and is most responsible for the logistical and scientific success of our expeditions into the Negev. Yoav even accompanied the Wooster Geologists on our last departmental field trip to the Mojave Desert.
7 MatmorBryoField070513Team Israel 2013 worked hard to find the bulk of the bryozoans used in this study. They are shown above at one of our most productive sites in Hamakhtesh Hagadol.
8 2013 team IsraelWe took a group photo in Jerusalem in July 2013. On the left is Steph Bosch (’14; bryozoan expert); next to her is Lizzie Reinthal (’14; crinoid specialist); then Oscar Mmari (’14; he worked on Cretaceous phosphates but also valiantly collected Jurassic bryozoans); then me; and on the far right Yoav Avni.

Please download and read the paper for more information and context on this study. The Matmor bryozoans are most similar to their counterparts in the Callovian of Poland. The low diversity of the Matmor bryozoan fauna is not unusual for the Jurassic, but they are less abundant than contemporaneous bryozoan faunas from higher paleolatitudes in Europe and North America. The unusually small zooids of the Matmor bryozoans may be a function of the “temperature-size rule” because this fauna developed in shallow, warm, tropical waters.

References:

Ausich, W.I. and Wilson, M.A. 2012. New Tethyan Apiocrinitidae (Crinoidea, Articulata) from the Jurassic of Israel. Journal of Paleontology 86: 1051–1055.

Feldman, H.R. and Brett, C.E. 1998. Epi- and endobiontic organisms on Late Jurassic crinoid columns from the Negev Desert, Israel: Implications for co-evolution. Lethaia 31: 57–71.

Wilson, M.A., Bosch, S. and Taylor, P.D. 2015. Middle Jurassic (Callovian) cyclostome bryozoans from the Tethyan tropics (Matmor Formation, southern Israel). Bulletin of Geosciences 90: 51–63.

Wilson, M.A., Reinthal, E.A. and Ausich, W.I. 2014. Parasitism of a new apiocrinitid crinoid species from the Middle Jurassic (Callovian) of southern Israel. Journal of Paleontology 88: 1212-1221.

Zatoń, M. and Taylor, P.D. 2009. Middle Jurassic cyclostome bryozoans from the Polish Jura. Acta Palaeontologica Polonica 54: 267–288.

Wooster’s Fossils of the Week: Fish-bitten echinoid spines from the Middle Jurassic (Callovian) of southern Israel

December 5th, 2014

BittenSpine585110214This week we revisit a group of fossils covered in an earlier blog post. It is now the subject of a paper that has just appeared in the journal Lethaia entitled, “Bitten spines reveal unique evidence for fish predation on Middle Jurassic echinoids“. My co-authors are my good Polish colleagues Tomasz Borszcz and Michał Zatoń. Above is one of these bitten echinoid spines from the Matmor Formation (Callovian) of Hamakhtesh Hagadol, the Negev, southern Israel. Many Independent Study students who worked in Israel over the past several years helped me collect hundreds like it. Now we have at last sorted through them systematically, collected the data, and published our analysis as a Lethaia Focus paper.
Figure 1 110214This is Figure 1 from the paper, with the caption: Selected examples of bitten rhabdocidaroid echinoid spines from the Matmor Formation (Callovian) of Hamakhtesh Hagadol, southern Israel. All scale bars are 5 mm. All specimens are from locality C/W-370 (N 30.94952°, E 34.98725°). A-I, various flabellate spines showing bite marks. J, spine with a double tooth impression. K-L, closer views of bite marks on flabellate spines. M, closer view of spine illustrated as A showing multiple tooth marks caused by a series of teeth. (Tomasz Borszcz constructed this great composite image.)
SpineCollectionMatmor585We have here the earliest direct evidence of fish predation on echinoids (“sea urchins” in this case) through these numerous bite marks. The echinoid was a species of Rhabdocidaris, which was very spiny. As you can see in the above image, the spines are diverse in shape and size. The large, flat ones easily preserve encrusters and bite marks. We collected and assessed 1266 spines; 57 of them (4.5%) are bitten.
RhabdocidaridTestPlateA test fragment from Rhabdocidaris found with the spines. Bits of the test (the main skeleton surrounding the body) are not nearly as common as the spines. The central elevation (the boss) is where a single spine was attached.

Camelbed 110214My Israeli geologist friend Yoav Avni is here collecting echinoderm fragments from one of my favorite (if least photogenic sites). It is an area used by camels for sleeping and mucking about in the soft sediments. Their activity brings fossil fragments to the surface in a most efficient way. (Finally something positive to say about the camels in Hamakhtesh Hagadol.)

Echinoderm bits 110214Here is a collection of fossil echinoderm fragments from this site. Most are from crinoids, but I’m sure you’ve noted the two echinoid spines there.

The variability of bite marks on the spines suggests that the predator manipulated the echinoids for some period, as shown by the sheephead fish (Semicossyphus pulcher) that feeds on sea urchins today. This YouTube video (expertly filmed by Joseph See and used with permission) shows a sheephead biting and tossing about an echinoid before forcing it open. Imagine what the spines would look like that are scattered about on the seafloor. This is the scenario we imagine for our Jurassic echinoids.

Predation is an important selective force in the evolution of communities, so this first evidence of direct predation on echinoids is an important data point in the explanation of how Mesozoic invertebrate marine communities changed in structure and composition after the Permian mass extinctions. Geerat Vermeij began the modern discussion of predation’s role in evolution with his 1977 paper on the Mesozoic Marine Revolution. We’re proud to have our work in this tradition.

If you want a pdf of our new Lethaia paper, please contact me.

References:

Borszcz, T. and Zatoń, M. 2013. The oldest record of predation on echinoids: evidence from the Middle Jurassic of Poland. Lethaia 46, 141–145.

Vermeij, G.J. 1977. The Mesozoic marine revolution; evidence from snails, predators and grazers. Paleobiology 3, 245–258.

Wilson, M.A., Borszcz, T. and Zatoń, M. 2014. Bitten spines reveal unique evidence for fish predation on Middle Jurassic echinoids. Lethaia (DOI: 10.1111/let.12110).

Wilson, M.A., Feldman, H.R., Bowen, J.C. and Avni, Y.  2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 263, 24–29.

Wilson, M.A., Feldman, H.R. and Krivicich, E.B. 2010. Bioerosion in an equatorial Middle Jurassic coral-sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 289, 93–101.

Zatoń, M., Villier, L. and Salamon, M.A. 2007. Signs of predation in the Middle Jurassic of south-central Poland: evidence from echinoderm taphonomy. Lethaia 40, 139–151.

Wooster’s Fossils of the Week: Large Miocene barnacles with bioimmurations from Maryland

November 28th, 2014

Barnacle side viewThese two beautiful barnacles are from the Calvert Formation (Middle Miocene) exposed near Parker Creek in Maryland. They are likely of the genus Chesaconcavus. Barnacles are most unlikely crustacean arthropods, cousins of shrimp, crabs and lobsters. Most, like these above, cement themselves head-downwards on a hard substrate like a rock or shell (or boat hull), build a carapace around themselves of calcitic plates, and then filter-feed by kicking their filamentous legs in the water above to catch suspended food. They are entirely marine and usually live in shallow water.
Chesaconcavus top view 585This is a top view of the barnacle pair. We can look straight into the carapace because the opercular plates, which form a kind of door system, have been removed. For barnacles, these are a healthy large size.
Barnacle baseNow we’ve turned the barnacles upside-down to see their attachment surface. The substrate to which they were glued is gone, so we can see the details of the basal plates. The barnacles may have just sloughed off a shell or rock, or maybe they were attached to an aragonitic shell that dissolved away. What is cool here is that we can see other organisms that were on the substrate the barnacles encrusted, including two smaller barnacles completely absorbed within the larger skeletons. This is again an example of bioimmuration. The smaller barnacles look like upside-down cones in this perspective. Note that in the apex of each you can see preserved opercular plates — the insides of the “doors” that are opened for feeding. In the fine-grained skeleton of the larger attachment surface you can see growth lines made by the large barnacles as they occupied the substrate. There are even some small serpentine impressions that may represent soft-bodied organisms that were bioimmured.
Chesaconcavus base detail 585Here’s a closer view of the above basal features. I love the frilly edge of the bioimmured barnacle in the top left.

References:

Kidwell, S.M. 1989. Stratigraphic condensation of marine transgressive records: Origin of major shell deposits in the Miocene of Maryland. Journal of Geology 97: 1-24.

Zullo, V.A. 1992. Revision of the balanid barnacle genus Concavus Newman, 1982, with the description of a new subfamily, two new genera, and eight new species. Paleontological Society Memoir 27: 1-46.

Wooster’s Fossils of the Week: A trace fossil from the Ordovician of Estonia

November 21st, 2014

Hyoliths03_585The fossils above have been in a previous post as examples of hyolith internal molds from the Middle Ordovician of northern Estonia. I collected them on my first visit to the Baltic countries in 2006. This week I want to recognize them again, but this time for the squiggly trace fossils you can just make out on their outer surfaces. These are the ichnospecies Arachnostega gastrochaenae Bertling, 1992. They are the subject of a paper that has just appeared in Palaeontologia Electronica entitled, simply enough, “The trace fossil Arachnostega in the Ordovician of Estonia (Baltica)“. The senior author is my Estonian buddy Olev Vinn. My Polish friend Michał Zatoń, my new Estonian colleague Ursula Toom, and I are co-authors.
399-861 copyAbove is an unpublished image of a gastropod internal mold from the Estonian Ordovician taken by Olev. It shows very well the variable branching nature Arachnostega. This trace was formed by a deposit-feeding organism mining organic material in a sediment-filled shell. It worked along the sediment-shell interface, probably because there was more nutrient value at that margin. The internal mold was formed when sediment filling the shell was cemented and the shell dissolved away, leaving the hard mold behind.
Screen Shot 2014-11-02 at 4.05.40 PMThis is Figure 3.1 in the new paper. Note the variation in the traces as well as the shells it inhabited. The caption as published: Arachnostega gastrochaenae Bertling in a gastropod from Haljala Regional Stage (Sandbian), Aluvere Quarry, northern Estonia. GIT 399-948-1. 2. Arachnostega gastrochaenae Bertling in a gastropod from the Kunda Regional Stage (Darriwilian), Kunda Ojaküla, northern Estonia. GIT 404-355-1. 3. Arachnostega gastrochaenae Bertling in a bivalve from the Haljala Regional Stage (Sandbian), Aluvere Quarry, northern Estonia. GIT 399-1590-1. 4. Arachnostega gastrochaenae Bertling in a bivalve from the Haljala Regional Stage (Sandbian), Aluvere Quarry, northern Estonia. GIT 399-1601-1. 5. Arachnostega gastrochaenae Bertling in a cephalopod from the Uhaku Regional Stage (Darriwilian), Püssi, northern Estonia. GIT 695-12-1.

Our paper analyzes the distribution of Arachnostega through the Ordovician of Baltica, a paleocontinent with a long history, including a collision with Avalonia (western Europe today, more or less) in the Late Ordovician. By plotting the occurrences of Arachnostega over time, we conclude that the makers of Arachnostega likely preferred cool climates and bivalve shells over gastropods. The tracemakers may have also been negatively influenced by the many biotic changes associated with the Great Ordovician Biodiversification Event.

Please check out the article itself. As with all papers in Palaeontologia Electronica, it is open access.

References:

Bertling, M. 1992. Arachnostega n. ichnog. – burrowing traces in internal moulds of boring bivalves (late Jurassic, northern Germany). Paläontologische Zeitschrift 66: 177-185.

Vinn, O., Wilson, M.A., Zatoń, M. and Toom, U. 2014. The trace fossil Arachnostega in the Ordovician of Estonia (Baltica). Palaeontologia Electronica 17, Issue 3; 41A; 9 p.

Wooster’s Fossils of the Week: A new crinoid species from the Middle Jurassic of southern Israel (with a bonus parasitic infection)

November 14th, 2014

1 PitBelowCalyxThese fossils are a joy to present this week. Lizzie Reinthal (’14), Bill Ausich (Ohio State University) and I have a new paper out in the latest issue of the Journal of Paleontology. It is titled: “Parasitism of a new apiocrinitid crinoid species from the Middle Jurassic (Callovian) of southern Israel”. Allow me to introduce Apiocrinites feldmani, a new articulate crinoid species. In the image above we have fused columnals (the “buttons” that make up a crinoid stem) upwards through two radial plates (from the calyx) with two pits and associated swollen columnals (due to a nasty little parasite; see below). A gnarly beast it is, and that’s what makes this creature interesting. I posted another even more twisted specimen earlier.

This new species is named after my friend Howard Feldman of Touro College and the American Museum of Natural History in New York. He was a pathfinder with the Matmor Formation and its fossils in Hamakhtesh Hagadol, Negev, southern Israel.
2 Extracted holdfast 2Apiocrinites feldmani is a small crinoid that lived in a brachiopod-coral-sponge community with a larger cousin named Apiocrinites negevensis (named earlier by Bill Ausich and me). Above we see a pluricolumnal (range of articulated columnals) with the holdfast of another A. feldmani wrapped around them. (I’m also showing off my mad skills at extracting an image from its background.)
3 Gnarly pluricolumnalThis pluricolumnal shows how bad the parasitic infection could get for many A. feldmani specimens. These gall-like growths are responses to some soft-bodied parasite that became embedded within the crinoid skeleton. The crinoid stems were deformed and likely lost considerable flexibility because of these parasites.
4 PitThis is a cross-section through one of the pits in an A. feldmani stem. Note that the narrow end of the pit begins at the articulation between two columnals. The parasite apparently wedged into that space, forcing the crinoid to grow around it as it grew itself. The result was a conical pit with swollen columnals surrounding it.
5 PitPluricolumnalHere we’re looking straight into one of the conical pits with a magnificent swelling around it. You can barely make out the articulation lines of the swollen columnals. Sometimes these cone-shaped pits were closed off by crinoid skeletal growth, presumably because the parasite inside died or otherwise left the premises. We don’t know the identity of this parasite, but we can surmise that it was a soft-bodied filter-feeder that probably gained an advantage from living high above the seafloor on these crinoid stems. Oddly, the larger A. negevensis crinoids in the same community did not have these parasites.

Living crinoids are afflicted by a variety of parasites. There are none today that have this sort of effect on the stems, but there are reports of fossil crinoids with similar pathologies all the way back to the Silurian (Brett, 1978).
6 BivalveBoringCrinoidEven after death these Jurassic crinoid stems provided homes for other organisms. Above is another cross-section through a stem of A. feldmani. “A” is one of the columnals, “B” is a section through an articulated bivalve filled with a relatively coarse sediment, and “C” is a fine sediment that filled in around the bivalve. The bivalve bored into the crinoid stem after death to make a crypt from which it could conduct its filter-feeding with some safety and seclusion.
7 Apiocrinites feldmani specimens 585Finally, here are the type specimens of Apiocrinites feldmani all packed up to be delivered to the Orton Geological Museum at Ohio State University. This museum has a large collection of echinoderms from around the world and so is an appropriate place for our treasures to reside awaiting further study.

This was a fun study that was part of Lizzie Reinthal’s 2013-2014 Independent Study project at Wooster. She concentrated on the taphonomy and sclerobiont successions as we both worked up the parasite and systematic story with our echinoderm expert friend Bill Ausich. There aren’t that many accounts of parasite-host relationships in the fossil record, so we’re proud to add one.

So many beautiful fossils in the Jurassic of southern Israel. More papers to come!

References:

Ausich, W.I. and Wilson, M.A. 2012. New Tethyan Apiocrinitidae (Crinoidea, Articulata) from the Jurassic of Israel. Journal of Paleontology 86: 1051–1055.

Brett, C.E. 1978. Host-specific pit-forming epizoans on Silurian crinoids. Lethaia 11: 217–232.

Feldman, H.R. and Brett, C.E. 1998. Epi- and endobiontic organisms on Late Jurassic crinoid columns from the Negev Desert, Israel: Implications for co-evolution. Lethaia 31: 57–71.

Wilson, M.A., Feldman, H.R. and Krivicich, E.B. 2010. Bioerosion in an equatorial Middle Jurassic coral-sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 289: 93–101.

Wilson, M.A., Reinthal, E.A. and Ausich, W.I. 2014. Parasitism of a new apiocrinitid crinoid species from the Middle Jurassic (Callovian) of southern Israel. Journal of Paleontology 88: 1212-1221.

Wooster’s Fossil of the Week: Upper Ordovician bivalve bioimmured by a bryozoan

November 7th, 2014

DSC_4503This week’s fossil is a simple and common form in the Cincinnatian Series (Upper Ordovician) of the Ohio, Indiana and Kentucky tri-state area. We are looking above at the base of a trepostome bryozoan that encrusted the outside of an aragonite bivalve shell. The bivalve shell (probably a species of Ambonychia) dissolved away, leaving its impression in the base of the calcitic bryozoan. This fossil is from the Upper Whitewater Formation (Richmondian) in eastern Indiana near Richmond itself.
DSC_4516In this closer view you can see the plications (“ribs”) of the bivalve preserved in negative relief on the attachment surface of the bryozoan. Close examination shows the individual zooecia of the bryozoan exquisitely molding the bivalve topography.

This is a kind of substrate bioimmuration, a preservational mode in which a skeletal organism (the bryozoan here) overgrows another organism (with a soft body or hard skeleton), making an impression of it in its base. The overgrown organisms is rots or dissolves away, leaving the exposed mold. You can also think of it as a kind of external mold produced by a living organism (the encruster). Such “vital immuration” was first described by Vialov (1961), and it is thoroughly covered by Paul Taylor in his 1990 paper cited below.

Again, these fossils are common in the Cincinnatian, and this one is far from being the fanciest. It is the Fossil of the Week because of its very ordinary nature, yet it provides extraordinary information. The aragonitic shell the bryozoan encrusted would have been lost forever after it dissolved if this bryozoan hadn’t occupied it and built a calcitic memorial. I’ve collected now hundreds of these substrate bioimmurations, and they have been critical in many studies, from the preservation of soft-bodied sclerobionts (see Wilson et al., 1994) to the revelation of boring interiors (and thus the behavior of the borers) and skeletal sclerobiont paleoecology. I’m also convinced there are many aragonitic mollusk taxa in the Cincinnatian that are known only through this bioimmuration process. These are fascinating fossils my students and I will continue to collect and study.

References:

Taylor, P.D. 1990. Preservation of soft-bodied and other organisms by bioimmuration—a review. Palaeontology 33: 1-17.

Vialov, O.S. 1961. Phenomena of vital immuration in nature. Dopovidi Akademi Nauk Ukrayin’ skoi RSR 11: 1510-1512.

Wilson, M.A., Palmer, T.J. and Taylor, P.D. 1994. Earliest preservation of soft-bodied fossils by epibiont bioimmuration: Upper Ordovician of Kentucky. Lethaia 27: 269-270.

Wooster’s Fossils of the Week: Upper Carboniferous seed casts from northeastern Ohio

October 31st, 2014

Trigonocarpus trilocularis Hildreth 1838We haven’t had a paleobotanical fossil of the week for awhile, so here are a couple of nice seed casts from the Upper Carboniferous Massillon Sandstone exposed near Youngstown, Ohio. They fall within the “form genus” Trigonocarpus Brongniart 1828. A form taxon is one that may not have any systematic or evolutionary validity, but it is a convenient resting place for taxa that share a particular morphological pattern but can’t be easily classified elsewhere. Trigonocarpus consists of seed casts that are “radially symmetrical, decorticated, and have their surface marked by three prominent ridges” (Gastaldo and Matten, 1978, p. 884). These particular seeds appear to be Trigonocarpus trilocularis (Hildreth, 1837). The taxa here are problematic, of course, because these seeds belong to larger plants that have their own names.
Trigonocarpus trilocularis Hildreth 1838_585These seeds appear to be from medullosalean trees, which were small relatives of today’s cycads. They were common in wetlands throughout North America and Europe during the Carboniferous, especially the Late Carboniferous. The seeds we have were likely attached to small stalks. You can see what appears to be a circular attachment scar above.
Samuel Prescott Hildreth (1783–1863)
Dr. Samuel Prescott Hildreth (1783-1863) was a physician and historian with a keen eye for natural history, especially including fossils and rocks. He was born in Massachusetts of strong Patriot stock and moved to the dangerous territory of Ohio in 1806, settling in Marietta in 1808. Dr. Hildreth is often cited as one of the first scientists in the country west of the Alleghany Mountains. His prolific writing is fast-moving, diverse and interesting, so he must have been a great traveling companion. Dr. Hildreth served in the Ohio Legislature and was on the first Ohio Geological Survey.
HildrethNutThe above is a figure from Hildreth (1837, p. 29) showing the fossil seed he named Carpolithus trilocularis. He wrote that “[t]his nut is probably the fruit of some antediluvian palm”, which is not far from what we think now (apart from the Flood reference!).

References:

Gastaldo, R.A. and Matten, L.C. 1978. Trigonocarpus leeanus, a new species from the Middle Pennsylvanian of southern Illinois. American Journal of Botany 65: 882-890.

Hildreth, S.P. 1837. Miscellaneous observations made during a tour in May, 1835, to the Falls of the Cuyahoga, near Lake Erie: extracted from the diary of a naturalist. American Journal of Science and Arts 31:1-84

Zodrow, E.L. 2004. Note on different kinds of attachments in trigonocarpalean (Medullosales) ovules from the Pennsylvanian Sydney Coalfield, Canada. Atlantic Geology 40: 197-206.

Wooster’s Fossils of the Week: A pair of molded nautiloids from the Upper Ordovician of northern Kentucky

October 24th, 2014

1 Nautiloid pair 091314Two nautiloids are preserved in the above image of a slab from the Upper Ordovician of northern Kentucky. (I wish I knew which specific locality. This is why paleontologists are such fanatics about labeling specimens.) The top internal mold (meaning it is sediment that infilled a shell now dissolved away) has been covered in a previous blog entry. This week I want to concentrate on the nautiloid at the bottom.

These nautiloids belong to the Family Orthoceratidae McCoy, 1844, which existed from the Early Ordovician (490 million years ago) through the Triassic (230 million years ago). They had conical, aragonitic shells with walls inside separating chambers (camerae) and a central tube (the siphuncle) connecting them. They were swimming (nektic) predators that could control their buoyancy through a mix of gases and liquids in the camerae mediated by the siphuncle.

What is most interesting here is the preservation of these nautiloids. The aragonitic shells were dissolved away at about the same time the internal sediment was cemented, forming the internal molds. These molds were exposed on the seafloor, attracting encrusting organisms. This means the dissolution and cementation took place quickly and in the marine environment, not after burial. This rapid dissolving of aragonite and cementation by calcite is typical of Calcite Sea geochemistry, something we don’t see in today’s Aragonite Seas.
2 Nautiloid siphuncle 091314Above is a close view of the cemented siphuncle of the lower nautiloid, heavily encrusted by a trepostome bryozoan.
3 Bryozoan undersideEven more cool, the outside of the lower nautiloid was encrusted by several trepostome bryozoan colonies. When the shell dissolved it left the undersides of these bryozoans exposed, as seen above. These undersides often contain the remains of shelly organisms the bryozoans encrusted (see the Independent Study project by Kit Price ’13) and even soft-bodied animals (epibiont bioimmuration; see Wilson et al., 1994).

A neat package here resulting from biological, sedimentological and geochemical factors.

References:

Palmer, T.J., Hudson, J.D. and Wilson, M.A. 1988. Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature 335 (6193): 809–810.

Sweet, W.C. 1964. Nautiloidea — Orthocerida, in Treatise on Invertebrate Paleontology. Part K. Mollusca 3, Geological Society of America, and University of Kansas Press, New York, New York and Lawrence, Kansas.

Wilson, M.A., Palmer, T.J. and Taylor, P.D. 1994. Earliest preservation of soft-bodied fossils by epibiont bioimmuration: Upper Ordovician of Kentucky. Lethaia 27: 269-270.

Wooster’s Fossils of the Week: Bivalve borings, bioclaustrations and symbiosis in corals from the Upper Cretaceous (Cenomanian) of southern Israel

October 17th, 2014

Fig. 2 Aspidiscus1bw_scale 585The stark black-and-white of these images are a clue that the fossil this week has been described in a paper. Above is the scleractinian coral Aspidiscus cristatus (Lamarck, 1801) from the En Yorqe’am Formation (Cenomanian, Upper Cretaceous) of southern Israel. The holes are developed by and around tiny bivalves and given the trace fossil name Gastrochaenolites ampullatus Kelly and Bromley, 1984. This specimen was collected during my April trip to Israel, a day recorded in this blog. I crowd-sourced the identification of these corals, and they were highlighted as earlier Fossils of the Week. Now I’d like to describe them again with new information, and celebrate the publication of a paper about them.

En Yorqe'am040914aThis is the exposure of the En Yorqe’am Formation where Yoav Avni and I collected the coral specimens approximately 20 meters from its base in Nahal Neqarot, southern Israel (30.65788°, E 35.08764°). It is an amazingly fossiliferous unit here with brachiopods, stromatoporoid sponges, zillions of oysters, gastropods, ammonites and the corals.

The abstract of the Wilson et al. (2014) paper tells the story: “Specimens of the small compound coral Aspidiscus cristatus (Lamarck, 1801) containing evidence of symbiosis with bivalves have been found in the En Yorqe’am Formation (Upper Cretaceous, early Cenomanian) of southern Israel. The corals have paired holes on their upper surfaces leading to a common chamber below, forming the trace fossil Gastrochaenolites ampullatus Kelly and Bromley, 1984. Apparently gastrochaenid bivalve larvae settled on living coral surfaces and began to bore into the underlying aragonitic skeletons. The corals added new skeleton around the paired siphonal tubes of the invading bivalves, eventually producing crypts that were borings at their bases and bioclaustrations at their openings. When a boring bivalve died its crypt was closed by the growing coral, entombing the bivalve shell in place. This is early evidence of a symbiotic relationship between scleractinian corals and boring bivalves (parasitism in this case), and the earliest record of bivalve infestation of a member of the Suborder Microsolenina. It is also the earliest occurrence of G. ampullatus.”

Fig. 3 BoringPair2bw_scale 585 Paired apertures of Gastrochaenolites ampullatus in the coral Aspidiscus cristatus.

Fig. 4 EmbeddedBivalve1bw_scale_rev 585Polished cross-section through a specimen of Gastrochaenolites ampullatus in an Aspidiscus cristatus coral. In the lower left of the chamber are layered carbonates (A) representing boring linings produced by the bivalve. An articulated bivalve shell (B) is preserved in the chamber. The chamber has been roofed over by coral growth (C).

Thank you very much to Tim Palmer and Olev Vinn for their critical roles in this paper, and, of course, thanks to Yoav Avni, the best field geologist I know.

References:

Avnimelech, M. 1947. A new species of Aspidiscus from the Middle Cretaceous of Sinai and remarks on this genus in general. Eclogae geologicae Helvetiae 40: 294-298.

Gill, G.A. and Lafuste, J.G. 1987. Structure, repartition et signification paleogeographique d’Aspidiscus, hexacoralliaire cenomanien de la Tethys. Bulletin de la Societe Geologique de France 3: 921-934.

Kleemann, K., 1994. Associations of corals and boring bivalves since the Late Cretaceous. Facies 31, 131-140.

Morton, B. 1990. Corals and their bivalve borers: the evolution of a symbiosis. In: Morton, B. (Ed.), The Bivalvia: Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge (1899-1986) at the 9th International Malacological Congress, 1986, Edinburgh, Scotland, UK. Hong Kong University Press, Hong Kong, pp. 11-46

Pandey, D.K., Fürsich, F.T., Gameil, M. and Ayoub-Hannaa, W.S. 2011. Aspidiscus cristatus (Lamarck) from the Cenomanian sediments of Wadi Quseib, east Sinai, Egypt. Journal of the Paleontological Society of India 56: 29-37.

Wilson, M.A., Vinn, O. and Palmer, T.J. 2014. Bivalve borings, bioclaustrations and symbiosis in corals from the Upper Cretaceous (Cenomanian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 414: 243-245.

 

Wooster’s Fossil of the Week: An early bryozoan on a Middle Ordovician hardground from Utah

October 10th, 2014

ORBIPORA UTAHENSIS (Hinds, 1970) 072014Last week I presented eocrinoid holdfasts on carbonate hardgrounds from the Kanosh Formation (Middle Ordovician) in west-central Utah. This week we have a thick and strangely featureless bryozoan from the same hardgrounds. It is very common on these surfaces, forming gray, perforate masses that look stuck on like silly putty. Above you see one on the left end of this hardground fragment. (The circular object to the right is another eocrinoid holdfast.)
Kanosh bryo eo 072014Here is a closer view of the bryozoan, again with one of those ubiquitous eocrinoids encrusting it. The holes are the zooecial apertures. Each zooecium is the skeletal component of a living bryozoan individual (zooid). Note that the walls are thick and granular between the zooecia. All the zooecia look pretty much the same, and there are no other structures like spines, pillars or maculae. This is about as simple as a bryozoan gets.

It is impossible to be certain without a thin-section or acetate peel showing the interior, but I’m pretty sure this Kanosh bryozoan is Orbipora utahensis (Hinds, 1970). It matches fairly well the description in Hinds (1970), who named it Dianulites utahensis, and it fits within the redescription by Ernst et al. (2007).

Several years ago we would have called this a trepostome bryozoan and left it at that. These are, after all, the “stony bryozoans” with thick calcite skeletons and long zooecia. However, the group to which Orbipora belongs is unusual because they have no polymorphs (small zooecia different from the primary zooecia) and have granular skeletal textures rather than laminated. We think the granular walls may be because the original skeletons were made of high-magnesium calcite that later altered to low-magnesium calcite and dolomite, losing details of the microstructure. Orbipora is thus in an as yet undescribed new order of bryozoans. [Update: See comment below from Paul Taylor.]

The Kanosh hardgrounds and their attaching faunas are important in geological and biological history because they are telling us something about the geochemical conditions of the seawater when they formed. We think this was a peak time of Calcite Seas, when low-magnesium calcite was a primary marine precipitate and carbon dioxide levels were high in the atmosphere and seawater. Hardgrounds would have formed rapidly because of early cementation, and aragonite and high-magnesium skeletons would have altered soon after death. The abundant Kanosh communities and substrates are critical evidence for these conditions that were superimposed on the Great Ordovician Biodiversification Event (GOBE). We thus have a delightful combination of seawater geochemistry (and, ultimately, the tectonics that controls it) and evolution intertwined in the history of these rocks and fossils.

References:

Ernst, A., Taylor, P.D. and Wilson, M.A. 2007. Ordovician bryozoans from the Kanosh Formation (Whiterockian) of Utah, USA. Journal of Paleontology 81: 998-1008.

Hinds, R.W. 1970. Ordovician Bryozoa from the Pogonip Group of Millard County, western Utah. Brigham Young University Research Studies, Geology Series 17: 19–40.

Marenco, P.J., Marenco, K.N., Lubitz, R.L. and Niu, D. 2013. Contrasting long-term global and short-term local redox proxies during the Great Ordovician Biodiversification Event: A case study from Fossil Mountain, Utah, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 377: 45-51.

Wilson, M.A., Palmer, T.J., Guensburg, T.E., Finton, C.D. and Kaufman, L.E. 1992. The development of an Early Ordovician hardground community in response to rapid sea-floor calcite precipitation. Lethaia 25: 19-34.

Next »