Wooster’s Fossils of the Week: A rugose coral and its encrusters from the Middle Devonian of New York

October 9th, 2015

Heliophyllum halli Bethany Center Centerfield 2 585This week’s fossils were found on a most excellent field trip to the Niagara region of New York in August. One of our outcrops was a small patch of gravel in Bethany Center where the Centerfield Limestone Member of the Ludlowville Formation (Givetian, Middle Devonian) was exposed. My colleagues and I found many interesting fossils here. The largest specimen I collected was the above rugose coral.
1 Heliophyllum halli Bethany Center Centerfield 2 copyIt is Heliophyllum halli Milne-Edwards and Haime, 1850. This species is very common throughout the Devonian Hamilton Group of New York, Ontario and surrounding areas. The 90-degree bend in the specimen is a result of the living coral being knocked over onto its side and then twisting to grow upwards again.
3 Rugose Bethany Center Centerfield 3These corals are called “rugose” because of their “wrinkled” exteriors, easily seen in this view. The solitary forms, like this one, are a single corallite that held one polyp in life. Their conical growth form gives them another nickname: “horn corals”. Rugose corals also come in colonial varieties, which we’ve covered before in this blog. Their skeletons are made of thick calcite, so they are almost always well preserved. These corals are distinguished from others by their strong internal vertical walls (septa) and relatively few horizontal or angled partitions (tabulae and dissepiments). They lived like most other corals as sessile benthic (stationary on the bottom) predators catching food with their tentacles. It is still uncertain whether they had photosynthetic symbionts (zooxanthellae) like modern corals. Emily Damstra has a nice reconstruction of living Heliophyllum halli.
4 Encrusting Bryozoan Bethany CenterThis particular coral has a collection of encrusting organisms on its exterior. Above is a remnant of a bryozoan.
5 Microconchid Bethany CenterThe encrusting coiled shell in the lower left is a nice microconchid (a mysterious lophophorate) and at the top is another type of bryozoan. Many of these encrusters are found on eroded parts of the coral skeleton, so they likely encrusted it after death.

Heliophyllum halli was named by Milne-Edwards and Haime in 1850. We’ve introduced Henri Milne-Edwards (1800-1885) before, and even James Hall (1811–1898) for whom the species is named. Jules Haime (1824-1856) is less known. He died too young at age 32, which may explain why we have no images of him. HIs father was a prominent physician, Auguste Haime (1790-1877). Jules, like many 19th Century paleontologists, started in medicine (studying in Tours) but gravitated toward the excitement in natural history, becoming a zoologist and paleontologist. He specialized in corals, joining up early in his career with Milne-Edwards. Haime rose fast in his new profession. One year before his death he became a professor of natural history at the Lycée Napoléon in Paris. In 1856 he was appointed vice-president of the Société géologique de France, but died a few months later.


Baird, G.C. and Brett, C.E. 1983. Regional variation and paleontology of two coral beds in the Middle Devonian Hamilton Group of Western New York. Journal of Paleontology 57: 417-446.

Brett, C.E. and Baird, G.C. 1994. Depositional sequences, cycles, and foreland basin dynamics in the late Middle Devonian (Givetian) of the Genesee Valley and western Finger Lakes region. In: Brett, C.E., and Scatterday, J., eds., Field trip guidebook: New York State Geological Association Guidebook, no. 66, 66th Annual Meeting, Rochester, NY, p. 505-585.

Milne-Edwards, H. and Haime, J. 1850-1854. A monograph of the British fossil corals. London, Palaeontographical Society. 736 pages.

Wooster’s Fossil of the Week: A spherical bryozoan from the Upper Ordovician of northeastern Estonia

October 2nd, 2015

1 Esthoniopora Kukruse 585Way back in July 2007 we had our first Team Estonia doing geological field research. Andrew Milligan (’08) and I, with our friend Dr. Olev Vinn of the University of Tartu, explored the Upper Ordovician of the northeastern part of the country, perilously close to the Russian border. Most of our work was stratigraphic and related to echinoderms, but I picked up several of these beautiful spherical bryozoans. This specimen comes from the Kiviõli Member, Viivikonna Formation, Kukruse Stage, Upper Ordovician, of Kohtla-Nõmme Quarry (N 59.35665º E 27.22343º). You won’t find the quarry on a map, though, because it was soon afterwards erased by continual mining. Now it is a grassy field. Since we are studying bryozoans this week in my Invertebrate Paleontology course, I’m bringing these specimens to the blog.

2 Esthoniopora subsphaericaThis is what two specimens of this bryozoan look like before cutting. They have the size and shape of golf balls.

3 Esthoniopora subsphaericaHere are the same two specimens cut in half and polished to show the growth rings and tubular zooecia (which held the feeding zooids of the living bryozoan).

4 Esthoniopora subsphaericaIn this closer view you can see the polygonal outlines of the zooecia, now filled with calcite. In the lower right is a boring that cut through the skeleton soon after the bryozoan’s death on the Ordovician seafloor. It has a bit of sediment that filled the boring except for the very center, which apparently held the body of the borer.

This bryozoan is the trepostome Esthoniopora subsphaerica (Bassler, 1911). Bassler originally called it Hemiphragma subsphaericum, which is a nod to its abundant hemiphragms (curving partitions in the zooecial tubes). As bryozoans go, this one has a fairly simple structure with no exozone, endozone, monticules or spines. How it lived on the seafloor with such a spherical shape is a bit of a mystery. A slightly flattened patch is probably where the sphere contacted the sediment. The borings in these bryozoans were studied by Wyse Jackson and Key (2007).

5 Ray BasslerThe species author, Raymond S. Bassler (1878-1961), was an American paleontologist prominent in the study of bryozoans and other encrusting organisms. He was born in Philadelphia and became very interested in fossils from childhood. He received his bachelor’s degree from that paleontological bastion the University of Cincinnati in 1902, followed quickly by his master’s (1903) and PhD (1905) degrees from George Washington University, where he served as a professor for over forty years. He also began work at the United States National Museum in Washington in 1910, rising through the ranks to become Head Curator in 1929. His main interests were bryozoans from the Cenozoic of the Gulf and Atlantic coasts, on which he had long collaborations with the French bryozoologist Ferdinand Canu. He also worked closely with Charles Schuchert, Carl Ludwig Rominger, and Edward Oscar Ulrich. Ray Bassler died in 1961.


Bassler, R.S. 1911. The Early Paleozoic Bryozoa of the Baltic Provinces. Bulletin of the US National Museum 77: 1-382.

Koromyslova, A.V., Fedorov, P.V. and Ershova, V.B. 2009. New records of bryozoans from the Lower Ordovician of the Leningrad Region and intercolonial variability in Esthoniopora lessnikowae (Modzalevskaya). Paleontological Journal 43:39–45.

Wyse Jackson, P.N. and Key, M.M. 2007. Borings in trepostome bryozoans from the Ordovician of Estonia: two ichnogenera produced by a single maker, a case of host morphology control. Lethaia 40: 237-252.

Wooster’s Fossil of the Week: “Lapis Judaicus” from the Middle Jurassic of southern Israel

September 25th, 2015

Pseudocidaris spine 371Paul Taylor (Natural History Museum, London) is, along with his other talents, an expert on the folklore of fossils. His accounts of how fossils have been used and imagined in the past are fascinating, especially to paleontologists who work with them every day. (We had an example this summer at Whitby, England, with Saint Hilda and the ammonites.) So I was primed when Tim Palmer told me about an article on “Lapis Judaicus” or “Jews’ Stone” by Christopher Duffin (2006). Tim thought the medicinal value of these things was particularly appropriate for me.

At the top of this post is a clavate (club-shaped) spine from the echinoid Pseudocidaris. I collected it years ago from the Matmor Formation (Middle Jurassic, Callovian) exposed in Makhtesh Gadol, southern Israel. In classical and medieval times this would have been a Jews’ stone (or jewstone). Its shape is critical, of course, but also its provenance in the Middle East.
Gesner 1565 figureThis is an illustration from Gesner (1565) showing a set of Jews’ stones (taken from Duffin, 2006, fig. 2). The image on the right (“.3”) is very close to our Pseudocidaris spine. The range of shapes for Jews’ stones was broad; all simply had to have this general clavate appearance and be from the Holy Lands.

Jews’ stones are examples of a kind of sympathetic magic attached to natural objects. It was thought that the globular shape of these spines resembled a bladder, and so these stones could be used to treat urinary disorders of various kinds. Sometimes the ancient prescriptions called for them to be sucked, but more often the stones were ground into a powder and combined with other exotic ingredients for consumption either orally … or other ways. The Jews’ stones were thought to have both preventative value as well as curative.

And that is why Tim recommended them to me. One of their primary uses was for the cursed kidney stones.

Nice to know I could have a potential treatment available right there on the outcrop!


Duffin, C.J. 2006. Lapis Judaicus or the Jews’ stone: the folklore of fossil echinoid spines. Proceedings of the Geologists’ Association 117: 265-275.

Gesner, C. 1565. De Rerum Fossilium. Lapidum et Gemmarum maxime, figures et similitudinibus Libel’: non solum Medicis, sed omnibus rerum Naturae ac Philologiae studiosis, utilis et jucundus futurus. Publisher unknown, Zürich.

Gould, S.J. 2000. The Jew and the Jew Stone. Natural History 6: 26-39.

Wooster’s Fossils of the Week: calcareous sponges from the Middle Jurassic of southern Israel

September 18th, 2015

1 Four Matmor SpongesThis post is in honor of Yael Leshno, a graduate student at The Hebrew University of Jerusalem who is beginning her dissertation on the Middle Jurassic marine fossils of Israel. I’m proud to be on her committee. She will have some fascinating material to work with, and she has great ideas to test. This will be a fun and productive project.

Among the Jurassic groups Yael will concentrate on are the calcareous sponges. This is ambitious because they are poorly known and the literature is replete with outdated names and concepts. Her work will be of great value, though, because sponges can tell us a lot about the environments in which they flourished. They may also give us much needed information on the biogeographical context of the Jurassic faunas of the Middle East.

Above are four sponges from the Matmor Formation (Callovian, Middle Jurassic) of Makhtesh Gadol, southern Israel. These types of sponge are fun because they actually look like sponges with their porous exteriors and central osculum (excurrent hole). They are the least complicated type of fossil sponge. (Yael will see plenty of the challenging ones!)
2 Matmor calcisponge Peronidella 585In this closer view of one of the Matmor sponges you can see the complex spicular network of the exterior (the structure that held the living cells). You will also note near the base the coiled tube of a sabellid worm named Glomerula gordialis (Schlotheim, 1820).
3 Matmor Peronidella osculum 585Here is a top view looking into the osculum of the largest specimen. Sponges are filter-feeders, sucking in water through their exterior pores, filtering the organic material out, and then sending the used water out an osculum like this.

This sponge type is traditionally named Peronidella Hinde, 1893; it would be then placed within the Family Peronidellidae WU, 1991. I’m suspicious of this name because it used for sponges from the Devonian through the Cretaceous, so it is likely a form-genus (meaning a named form that may not have particular systematic value). Yael will no doubt section these common Matmor sponges and find enough internal detail to come up with a more useful name.
4 GJ Hinde imageGeorge Jennings Hinde (1839-1918; image from Woodward, 1918) named the fossil sponge genus Peronidella in 1893. Hinde grew up in a farming family in Norwich, England. He was clearly a self-starter, studying classical languages and science on his own as a boy. When he was about 16 he listened to a lecture given by a clergyman on the Scottish geological polymath Hugh Miller (1802-1856), who had recently died tragically. Hinde was intrigued and began to explore geology. In 1862, after beginning his own farming, Hinde visited the geological collection at the British Museum in London. He began an acquaintance there with a family relative, the famous geologist and paleontologist Henry Woodward (1832-1921). In that same year Hinde sold his farm and moved to Argentina to raise sheep. A few years later he traveled to North America and began an epic seven years studying geology, traveling across the eastern half of the continent. (He must have had a considerable source of income for this!) He enrolled as a student in Toronto University under the paleontologist H.A. Nicholson (1844–1899) and began to produce his first geological papers. When he returned to England in 1874 he was elected a Fellow of the Geological Society of London. He continued to travel, this time over much of Europe and the Middle East. In 1880 he finished his PhD under Professor Karl Alfred Ritter von Zittel (1839-1904). He had a long career after that with numerous papers and scientific awards. Long et al. (2003) adds to this biography that Hinde very much wanted women to be allowed membership in the Geological Society of London, a point neglected in the obituary by Henry Woodward (1918). Hinde did not, alas, live to see the success of his progressive quest. The first woman was elected a Fellow of the GSL on May 21, 1919, a little more than a year after his death.


Hinde, G.J. 1893. A monograph of the British fossil sponges, Part III. Sponges of the Jurassic strata, p. 189-254. The Palaeontographical Society, London.

Hurcewicz, H. 1975. Calcispongea from the Jurassic of Poland. Acta Palaeontologica Polonica 20: 223-291.

Long, S.L., Taylor, P.D., Baker, S. and Cooper, J. 2003. Some early collectors and collections of fossil sponges represented in The Natural History Museum, London. The Geological Curator 7: 353-362.

Vinn, O. and Wilson, M.A. 2010. Sabellid-dominated shallow water calcareous polychaete tubeworm association from the equatorial Tethys Ocean (Matmor Formation, Middle Jurassic, Israel). Neues Jahrbuch für Geologie und Paläontologie 258: 31-38.

Woodward, H. 1918. Obituary: George Jennings Hinde, Ph.D.(Munich), FRS, FGS, VP Pal. Soc. Geological Magazine (Decade VI) 5: 233-240.

Zittel, K.A. 1879. Studien über fossile Spongien, Teil 3. — Bayer. Akad. d. Wiss., math. naturwiss Cl. Abb. 13: 91-138.

Wooster’s Fossil of the Week: A starry bryozoan from the Upper Ordovician of southern Ohio

September 11th, 2015

Constellaria polystomella Liberty Formation 585At this time of the year I pick out one interesting specimen from the fossils my Invertebrate Paleontology class collected on their first field trip into the Upper Ordovician of southern Ohio. They did so well this week that I may be choosing a few more later! Our Fossil of the Week is the above bryozoan given the beautiful name Constellaria polystomella Nicholson, 1875. It was found by Jacob Nowell at the Caesar Creek Emergency Spillway in the Liberty Formation.
Constellaria Liberty closerConstellaria is a beautiful form, and one of the easiest bryozoans to recognize. Like all bryozooans, it was a colonial invertebrate with hundreds of filter-feeding individuals (zooids) housed in tiny tubes called zooecia. In Constellaria some of the zooecia are regularly grouped together and raised into star-shaped bumps called monticules. (The name Constellaria is clever.) This genus is a cystoporate bryozoan in the Family  Constellariidae.
JD Dana by Daniel Huntington 1858I was surprised to learn that Constellaria was named in 1846 by James Dwight Dana (1813-1895), one of the most accomplished American scientists of the 19th Century. He is best known for his Manual of Mineralogy (1848) which is still in print (greatly revised) and known as “Dana’s Mineralogy”. Dana (shown above in 1858) studied geology on scales from crystal structures to continents, with volcanoes and mountain-building in between. He had an affinity for “Zoophytes” (animals that appear to be plants), thus entangled him briefly with bryozoan systematics. Dana was born in Utica, New York, and attended Yale College, working under Benjamin Silliman, a famous chemist and mineralogist. After graduating from college he had a cool job teaching midshipmen in the US Navy, sailing through the Mediterranean in the process. For four years he served in the United States Exploring Expedition in the Pacific region. He made numerous important geological observations in Hawaii and the Pacific Northwest that he later published in books and papers. He even dabbled in theology with books like Science and the Bible: A Review of the Six Days of Creation (1856). Dana died in 1895 having received numerous accolades and awards for his research and writing.


Brown, G.D., Jr., and Daly, E.J. 1985. Trepostome bryozoa from the Dillsboro Formation (Cincinnatian Series) of southeastern Indiana. Indiana Geological Survey Special Report 33: 1-95.

Cutler, J.F. 1973. Nature of “acanthopores” and related structures in the Ordovician bryozoan Constellaria. Living and Fossil Bryozoa. Academic Press, London, 257-260.

Dana J.D. 1846. Structure and classification of zoophytes. U.S. Exploring Expedition 1838-1842, 7: 1-740.

Wooster’s Fossil of the Week: A mystery fossil for my Invertebrate Paleontology students

September 4th, 2015

1 Stereolasma singleAt the beginning of my Invertebrate Paleontology course I give each student a fossil to identify by whatever means necessary. I challenge them to take it down to the species level, and tell me its age and likely place of collection. The fossil this year is shown above: the rugose coral Stereolasma rectum (Hall, 1843) from the Middle Devonian of New York. I collected the specimens on my western New York adventure last month from the Wanakah Shale Member of the Ludlowville Formation at Buffalo Creek in Erie County. (There were a lot of them! This coral is so common that you can buy them online at science supply stores.)

The corals I collected were well weathered on the Devonian seafloor. You can see some evidence of this in the exterior which shows opened tunnels of borings. They were not appreciably weathered on the outcrop because they were directly excavated from the shale matrix.
2 Stereolasma cross section 585This is a cross-section through one of the S. rectum specimens. The internal radiating calcitic partitions (septa) are well preserved by clear calcite cement. There appear to be at least two generations of sediment that penetrated into the interior after the death of the polyp. The posthumous events affecting these corals may be more interesting than their life histories.

That awkward species name comes from the Latin rectus for “straight”. The anatomical rectum that we all know well comes from the same root but is based on a misconception by early anatomists that the terminal part of the large intestine in mammals is straight. It’s not, as a Google search will quickly show you. (I decided against including an image.)
3 Wanakah coralsReferences:

Baird, G.C. and Brett, C.E. 1983. Regional variation and paleontology of two coral beds in the Middle Devonian Hamilton Group of Western New York. Journal of Paleontology 57: 417-446.

Brett, C.E. and Baird, G.C. 1994. Depositional sequences, cycles, and foreland basin dynamics in the late Middle Devonian (Givetian) of the Genesee Valley and western Finger Lakes region. In: Brett, C.E., and Scatterday, J., eds., Field trip guidebook: New York State Geological Association Guidebook, no. 66, 66th Annual Meeting, Rochester, NY, p. 505-585.

Busch, D.A. 1941. An ontogenetic study of some rugose corals from the Hamilton of western New York. Journal of Paleontology 15: 392-411.

Stumm, E.C. and Watkins, J.L. 1961. The metriophylloid coral genera Stereolasma, Amplexiphyllum, and Stewartophyllum from the Devonian Hamilton group of New York. Journal of Paleontology 35: 445-447.

Wooster’s Fossil of the Week: An encrusted and bored oyster from the Upper Jurassic of northern England

August 28th, 2015

1 Passage Beds Oyster shell bored 585This week’s fossil is a celebration of classes beginning again at Wooster, and a memory of excellent summer fieldwork. It isn’t especially attractive, but it has paleontological significance. We are looking at a broken surface through a thick oyster from the Passage Beds Member of the Coralline Oolite Formation (Upper Jurassic, Oxfordian) exposed on the north side of Filey Brigg, North Yorkshire, England. It was collected by Meredith Mann (’16) as part of her Senior Independent Study research in June. One of her project goals is to assess the sclerobionts (encrusters and borers) that lived on and within hard substrates in this interval. This thick shell is a start.
2 Passage Beds borings 585In this closer view we can see three rounded objects penetrating the oyster shell. These are bivalve borings called Gastrochaenolites. They were open holes excavated by drilling bivalves that were later filled with sediment and cement.
3 Passage oyster encrusters 585The outer surface of the oyster shell is covered with encrusting oysters and serpulid worm tubes. These will be more visible later after Meredith prepares the specimens. The first thing she is likely to do is use some bleach to remove the modern marine algae. Our specimens were all collected near the high-water tide level on the rocky north coast of Filey Brigg (N54.21823°, W00.26904°).
4 Meredith Passage Beds  072415Meredith is here standing against the Passage Beds Member on June 14, 2015. Her feet are on the top of the underlying Saintoft Member of the Lower Calcareous Grit Formation. About a meter and a half above her head is the base of the overlying Hambleton Oolite Member (Lower Leaf) of the Coralline Oolite Formation. As we took this photo the sea was pounding behind us on a rising tide.
5 Passage Unit 1 fossils 072415Here is a cluster of oysters preserved in the lowest unit of the Passage Beds. It is a sandstone distinct from the overlying limestones. There is much evidence of high-energy transportation of shelly material.
6 Meredith collection 072315Here are Meredith’s specimens from this site, all cleaned and in stratigraphic order. A critical part of her work will be a petrographic analysis of the Passage Beds Member. We hope to show you these thin-sections next month.
7 Meredith Filey Brigg point 072415Meredith celebrating the end of her fieldwork as she confronts the rising sea on the tip of Filey Brigg (N54.21560°, W00.25842°).

Wooster’s Fossil of the Week: A blastoid from the Lower Carboniferous of Illinois

August 21st, 2015

Pentremites IL 585It is sometimes hard to believe that exquisite fossils such as the above are sometimes very common. The above is a theca of the blastoid Pentremites godoni (DeFrance, 1819) found in the Lower Carboniferous (Mississippian) of Illinois. (Thanks to expert Colin Sumrall for the identification.) In some places these fossils can be picked up by the hundreds.

Blastoids are stemmed echinoderms that appeared first in the Ordovician and went extinct at the end of the Permian. They were most diverse and abundant in the shallow carbonate seas of the Lower Carboniferous, especially in North America. They are much beloved and studied fossils.
Pentremites IL basal 585The basal side of the above theca shows that blastoids had a small circular stem attachment, much like their cousins the crinoids. They extended numerous feeding appendages (brachioles) from their ambulacra (the five “petals” on the upper surface and sides) for filter-feeding. The theca is made of calcitic plates that are tightly fused together, thus ensuring they survive the vicissitudes of preservation.
Pentremites close 585In this close view of the top of the theca are five holes (spiracles) surrounding a central pit (the mouth) One spiracle (in the upper right) is larger than the others. It contains the anus and is thus called an anispiracle. The spiracles are openings into the interior of the theca, which contained a complexly-folded respiratory system called the hydrospire.

Pentremites godoni has a complicated taxonomic history. The original type specimen of the species (a specimen used as the definition of the species — a Platonic ideal form!) was destroyed in the middle of the 19th Century in a museum fire. The specimen was illustrated and described (although not named) in 1808 by James Parkinson (see below).
Screen Shot 2015-07-21 at 4.55.39 PMScreen Shot 2015-07-21 at 4.59.30 PMParkinson (1808, pl. 13) referred to this specimen as “an asterial fossil from America; probably of the nature of the encrinus.” Encrinus was a term used at the time for crinoids. Fay (1961) describes the convoluted way Parkinson’s specimen above became the type not only for the species, but also how P. godoni came to define the genus Pentremites as well. That Parkinson (1808) diagram, though, is the only image of the original specimen, and probably the first illustration of a blastoid.


Atwood, J.W. and Sumrall, C.D. 2012. Morphometric investigation of the Pentremites fauna from the Glen Dean Formation, Kentucky. Journal of Paleontology 86: 813-828.

DeFrance, J.M.L. 1819. Dictionnaire des Sciences Naturelles 14, EA-EQE, p. 467.

Fay, R.O. 1961. The type of Pentremites Say. Journal of Paleontology 35: 868-873.

Parkinson, J. 1808. Organic remains of a former world. London, Noraville & Fell, v. 2, p. 235-236, pl. 13.

Waters, J.A., Horowitz, A.S. and Macurda, D.B., Jr. 1985. Ontogeny and phylogeny of the Carboniferous blastoid Pentremites. Journal of Paleontology 59: 701-712.

Wooster’s Fossil of the Week: A very large Upper Jurassic ammonite from southern England

August 14th, 2015

1 Titanites fragment Bowers QuarryThe shard above doesn’t look like much. It comes from a specimen far too large for us to excavate, let alone pack onto a plane for the trip home.
2 TitanitesinrockHere’s a view of one of the full specimens still in bedrock.
3 KN&Titanites 2002And here we see a liberated specimen with Katherine Nicholson Marenco (’03) for scale 12 years ago. This is the ammonite Titanites anguiformis Wimbledon and Cope, 1978, from the Portland Freestone (anguiformis Zone, Portlandian, Upper Jurassic) exposed on the Isle of Portland in Dorset, southern England. Katherine and I, with help from Rich Poole (’03), Clive Griffiths, Tim Palmer and Paul Taylor, worked there in the summer of 2002 looking at encrusting faunas on shells for her Independent Study project. We could only take bits home, hence the fragment above. It was a wonderful field season in a spectacular place.

Titanites anguiformis is one of the largest ammonites, with specimens up to a meter in diameter. Our specimens above are all molds made of limestone; the aragonitic shells dissolved away. These lumbering beasts were swimming predators like all ammonoids, feasting on a variety of invertebrates in a shallow Jurassic sea.
4 CoombefieldBlocks2Our team spent most of its time in active building stone quarries like this one (Coombefield) looking at excavated blocks of Portland Freestone. This rock is one of the most comon building stones in England.
5 KNChiselling2The many surfaces of the blocks exposed fossils in a variety of orientations. Here is Katherine doing what she did for three weeks: chiseling bits of shell from the limestone.
6 Titanitesclose-up1Our goal was to collect surfaces like this. We have here an internal mold of Titanites anguiformis. The inner surface of the shell (a cryptic space) was encrusted by bryozoans, serpulid worms and oysters. When the aragonitic shell dissolved, the undersides of the encrusters were exposed like we see here. We then studied the attachment surfaces of the encrusters, looking at their growth patterns and successional overgrowths. Katherine’s work resulted in this GSA presentation.

[#Beginning of Shooting Data Section] Nikon CoolPix2500 2002/06/18 10:24:09 JPEG (8-bit) Normal Image Size:  1600 x 1200 Color ConverterLens: None Focal Length: 5.6mm Exposure Mode: Programmed Auto Metering Mode: Multi-Pattern 1/900.9 sec - f/4.5 Exposure Comp.: 0 EV Sensitivity: Auto White Balance: Auto AF Mode: AF-S Tone Comp: Auto Flash Sync Mode: Not Attached Electric Zoom Ratio: 1.00 Saturation comp: 0 Sharpening: Auto Noise Reduction: OFF [#End of Shooting Data Section]This fossil bit is thus a reminder of a great field season on the coast of southern England many years ago.


Falcon‐Lang, H. 2011. The Isle of Portland, Dorset, England. Geology Today 27: 34-38.

Wimbledon, W.A. and Cope, J.C.W. 1978. The ammonite faunas of the English Portland Beds and the zones of the Portlandian Stage. Journal of the Geological Society of London 135: 183-190.

Wooster’s Fossil of the Week: Small and common orthid brachiopods from the Upper Ordovician of Ohio

August 7th, 2015

Cincinnetina meeki (Miller, 1875) slab 1 585
One of the many benefits of posting a “Fossil of the Week” is that I learn a lot while researching the highlighted specimens. I not only learn new things, I learn that some things I thought I knew must be, shall we say, updated. The above slab contains dozens of brachiopods (and a few crinoid ossicles and bryozoans). I have long called the common brachiopod here Onniella meeki. Now I learn from my colleagues Alycia Stigall and Steve Holland at their great Cincinnatian websites that since 2012 I should be referring to this species as Cincinnetina meeki (Miller, 1875). Jisuo Jin sorted out its taxonomy in a Palaeontology article three years ago:

Phylum: Brachiopoda
Class: Rhynchonellata
Order: Orthida
Family: Dalmanellidae
Genus: Cincinnetina
Species: Cincinnetina meeki (Miller, 1875)
Cincinnetina meeki (Miller, 1875) slab 2 585This slab, which resides in our Geology 200 teaching collection, was found at the famous Caesar Creek locality in southern Ohio. It is from the Waynesville/Bull Fork Formation and Richmondian (Late Ordovician) in age.
Cincinnetina meeki (Miller, 1875) slab 3 585You may see some bryozoans in this closer view. This bed is a typical storm deposit in the Cincinnatian Group. The shells were tossed about, most landing in current-stable conditions, and finer sediments were mostly washed away, leaving this skeletal lag.


Jin, J. 2012. Cincinnetina, a new Late Ordovician dalmanellid brachiopod from the Cincinnati type area, USA: implications for the evolution and palaeogeography of the epicontinental fauna of Laurentia. Palaeontology 55: 205–228.

Next »