Archive for November, 2016

Wooster’s Fossils of the Week: Geological Magic Lantern Slides from the 19th Century (Part I)

November 25th, 2016

1-teleosaurus-ichthyosaurus-pentacrinites-ammonites-gryphaea“Wooster’s Fossil of the Week” is not always about actual fossils, but our topics are each paleontological. Many years ago I discovered in an old box tucked away in the attic of Scovel Hall at Wooster a set of “Magic Lantern Slides” used in geology courses. I came across them again recently and thought I would share these ancient scenes. Lantern slides were the 19th Century equivalent of PowerPoint, so generations of Wooster geology students must have sat in rapture looking at these colorful images. (At least that’s how I imagine them now viewing my PowerPoint slides!) The above imagined seashore view includes the crocodylian Teleosaurus atop the layered rocks, Ichthyosaurus immediately below, four long-necked Plesiosaurus on the left, an orange cluster of the crinoid Pentacrinus rooted inexplicably in the beach sand, and a scattering of ammonite and oyster shells.  The caption on the image says these animals lived during “the Secondary Epoch of the Earth’s history”. We would now say this is a Jurassic scene. The ichthyosaur looks the most odd to us. Not only is it crawling on the land, it lacks a dorsal fin and the characteristic bi-lobed, shark-like tail. These were later discoveries about ichthyosaurs made only after specimens were found with skin impressions.

2-ammonite-lantern-detailThis close-up shows the detail in these images. Ammonites are on the left (“6”) and the oyster Gryphaea is on the right (“7”).

3a-magic-lantern-slide-geological-585The Magic Lantern Slides are 4×8 inches with the image on glass fixed in a thin slab of wood with metal rings. These are chromolithograph slides, each stamped “T.H. McAllister, Optician, N.Y.”. McAllister was the most prominent of many American producers of lantern slides in the late 19th century.

4-megalosaurus-pterodactyleThe quadrupedal beasts in the foreground are the of the Jurassic theropod dinosaur Megalosaurus, with pterodactyls in the background. We now know Megalosaurus was bipedal, like all theropod dinosaurs.

5-megalosaurus-headAnother detail showing the fine quality of these color images on glass.

6-gigantic-lizards-and-some-pterosauria-by-benjamin-waterhouse-hawkins-1853Most readers with any background in the history of paleontology recognize these reconstructions of ancient life from the work of Benjamin Waterhouse Hawkins (1807-1894). In 1855, Waterhouse Hawkins finished sculpting life-sized models of these extinct animals, along with many others, for the Crystal Palace gardens in London. He was advised for the anatomical details by Sir Richard Owen (1804-1892), a hero of paleontology but not a fan of Darwinian evolution. He is responsible for the dinosaurs of Waterhouse Hawkins looking rather mammalian. Most of these extraordinary animal statues still exist.

9-benjamin_waterhouse_hawkins-_photograph_by_maull__polyblankBenjamin Waterhouse Hawkins (1807-1894). More reconstructions from him, along with his brief biography, in the next installment.

 

Wooster’s Fossil of the Week: A juvenile conch from the Upper Pleistocene (Eemian) of The Bahamas

November 18th, 2016

inagua-lobatus-gigasI collected this beautiful shell from a seashore exposure of Pleistocene sediments on Great Inagua, the third largest island of The Bahamas. I was on an epic expedition to this bit of paradise with Al Curran and Brian White of Smith College in March 2006. We were pursuing evidence for a sea-level change event in the Eemian, about 125,000 years ago. This was some of the most exciting scientific work I’ve done, so this little shell brings back many memories. I found it loosely cemented into a small patch of carbonate sediments inside a hollow of an ancient coral reef. This shell and numerous other samples were basic data for a rapid rise and fall of sea level during the last interglacial interval. The project is summarized in the Thompson et al. (2011) reference below.

This is a juvenile of the common Queen Conch Lobatus gigas (Linnaeus, 1758). In its adult form with a flared aperture it is one of the most recognizable modern shells in the world. Some of you may be surprised by the generic name. I was. I knew this shell as Strombus gigas, the original name given to it by the sainted father of taxonomy Carolus Linnaeus in 1758. After several adventures in the literature, Landau et al. (2008) placed the species in the genus Lobatus Swainson 1837.

salvador-lobatus-gigas-1The species looks exactly the same today, at least in its shell. This is a similar modern Queen Conch juvenile collected from San Salvador Island in The Bahamas. Note the color patterns which are lost in the fossil.

salvador-lobatus-gigas-2This is the apertural view of the same modern shell. With time it would have grown a much thicker apertural margin to protect it from predators.

buonanni-strombus-gigas-figureThis is the earliest image known of the Queen Conch (Buonanni, 1684). For a long time the type specimen (the specimen of record defining the taxon) of Strombus gigas (the older Linnaeus name) was missing. In 1941 this figure — the figure itself — was designated a neotype (a replacement type) of the species. (First time I’ve heard of that move.) The original type specimen, though, was found in Sweden in 1953, so there is an actual shell in the collections and no need for this neotype.

bonanno-coverThat first figure of Lobatus gigas was drawn by Filippo Bonanni (1638-1723), a remarkable Italian Jesuit scholar. It is found in the book above, which is the first known guide to seashells for collectors. (Note the “SUPERIORUM PERMISSU”, meaning he published with the permission of his Jesuit superiors.) Bonanni was one of the first to suggest fossils had at least some organic origins, speculating that they were either organism remains or “products of natural powers.”

References:

Buonanni, F. 1684. Recreatio mentis, et oculi in observatione animalium testaceorum curiosis naturae inspectoribus italico sermone primum proposita. p. Philippo Bonanno . Nunc denuo ab eodem latine oblata, centum additis testaceorum iconibus, circaquae varia problemata proponuntur. Ex typographia Varesij, Romae, xvi + 270 + [10] pp., 139 pls.

Landau, B.M., Kronenberg G.C. and Herbert, G.S. 2008. A large new species of Lobatus (Gastropoda: Strombidae) from the Neogene of the Dominican Republic, with notes on the genus. The Veliger 50: 31–38.

Thompson, W.G., Curran, H.A., Wilson, M.A. and White, B. 2011. Sea-level oscillations during the Last Interglacial highstand recorded by Bahamas corals. Nature Geoscience 4: 684–687.

White, B.H., Curran, H.A. and Wilson, M.A. 2001. A sea-level lowstand (Devil’s Point Event) recorded in Bahamian reefs: comparison with other Last Interglacial climate proxies; In: Greenstein, B.J. and Carney, C., (editors), Proceedings of the 10th Symposium on the Geology of the Bahamas: Bahamian Field Station, San Salvador Island, p. 109-128.

Wilson, M.A., Curran, H.A. and White, B. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

Wooster’s Fossils of the Week: Modern vermetid snails, a slipper shell, and an oyster

November 11th, 2016

crepidula-vermetidaeNot actually fossils this week, but cool nonetheless. This complex specimen is in our Invertebrate Paleontology teaching collection with no label giving its original location. In the foreground is the underside of a slipper shell gastropod identified as Crepidula fornicata. The tangled mass of tubes encrusting it is a vermetid gastropod. A small round hole drilled by a predatory gastropod is visible in the slipper shell.

vermetidae-oysterTurning the specimen over we see a left valve of the oyster Ostrea encrusting the exterior of the slipper shell, along with another view of the vermetid tubes and gastropod boring.

rafinesque-constantine-1783-1840The twisty gastropod Family Vermetidae was named in 1815 by Constantine Samuel Rafinesque-Schmaltz (1783 – 1840).Rafinesque was a character. His name is immediately recognizable to paleontologists of the Ordovician because Hall and Clarke named the common brachiopod Rafinesquina after him in 1892. Rafinesque was born of a French merchant father (Rafinesque) and German mother (Schmaltz) near Constantinople in the Ottoman Empire. He was self-educated, learning classical languages before his teens and sorting through rocks, minerals, plants, animals and fossils at a prodigious rate. He began to write numerous articles and books on anthropology, botany, zoology, geology, paleontology, history, and linguistics. The naturalist and philosophical establishment rejected him, for the most part, so he was little praised in his life. Most scholars agree now that he was ahead of his time on many topics, including evolution.

In 1819, Rafinesque was appointed professor of Botany at Transylvania University in Lexington, Kentucky. He apparently attracted considerable trouble during his years in Kentucky. In 1826 he was either fired by the university president or he walked out in a huff. Legend is that he left an angry curse on the school! He died in Philadelphia in 1840 of stomach cancer, to which some attributed to his own homemade medications.

screen-shot-2016-11-07-at-9-49-57-amThe cover page of Rafinesque’s 1815 work in which he attempted to classify just about everything in the universe. Note the subheading: “Nature is my guide, and Linnaeus is my master.”

screen-shot-2016-11-07-at-9-49-32-amA suitably grand frontispiece for the 1815 book.

screen-shot-2016-11-07-at-10-37-25-amThis is the extent of establishing a new family in the early 19th century (Rafinesque, 1815, p. 144). No wonder Rafinesque could name, by his own count, over 6700 taxa.

References:

Hall, J. and Clarke, J.M. 1892. An introduction to the study of the genera of Palaeozoic Brachiopoda. Part I. Geological Survey of the State of New York, Paleontology 8, p. 1-367.

Rafinesque, C.S. 1815. Analyse de la nature: ou tableau de l’univers et des corps organisés. J. Barravecchia: Palermo. 224 pages.

How thick was the ice?

November 8th, 2016

AMHERST, MA – Our Keck project studying the construction of a glaciovolcanic ridge in southwest Iceland is in full swing and our students are hard at work on their research. You may remember that we traveled to Iceland this summer to conduct field work, then returned to Wooster, where we prepared our samples for analysis. All of the time and energy devoted to sample preparation is finally paying off. This weekend, Chloe Wallace (’17, Wooster) and I met Cara Lembo (’17, Amherst) at UMass Amherst to analyze their samples by Fourier Transform Infrared Spectroscopy (FTIR) and Electron Microprobe.

Chloe and Cara are trying to determine the emplacement pressure of the samples. The emplacement pressure should reveal information about water depth (or ice thickness) at the time of the eruption. To estimate emplacement pressure, they are using the volatile contents of the quenched glass rims of pillow lavas. Volatiles are lost during an eruption as a function of pressure; the smaller the pressure, the more degassing. So, by measuring the volatiles that are trapped in the glass, we can figure out how much pressure the glass experienced when it was formed.

Prior to the visit, Chloe and Cara selected the freshest glass chips, then polished them into ~100-200 micron-thick wafers. They analyzed them for H2O using the FTIR, making sure to avoid any vesicles, crystals, and fractures. They collected nearly 300 data points on 16 samples, so they have a thorough and extensive dataset to work with.

Chloe (left) is looking for an ideal measurement location on her glass chip. Cara (right) is operating the data collection and reduction software.

Chloe (left) is looking for an ideal measurement location on her glass chip. Cara (right) is operating the data collection and reduction software.

In order to calculate water depth (or ice thickness) from H2O concentration, we use a solubility model. The model requires additional inputs, including the glass composition, which we measured by electron microprobe.

After the glass chips were analyzed by FTIR, they were mounted on a glass slide for probe analysis.

After the glass chips were analyzed by FTIR, they were mounted on a glass slide for probe analysis.

The electron microprobe allows us to measure the composition of a very small (micron-scale) spot on the glass chip.

Chloe is examining her glass chips on the microprobe.

Chloe is examining her glass chips on the microprobe.

Cara uses the map to find her way around the slide. They analyzed several points on each chip, and will use those data to determine the glass composition.

Cara uses the map to find her way around the slide. They analyzed several points on each chip, and will use those data to determine the glass composition.

It was a short and intense visit, but we accomplished all of our goals. We especially would like to recognize Dr. Sheila Seaman for generously giving her time and energy. She made it all possible.

Wooster’s Fossils of the Week: Demosponge borings in a muricid gastropod from Florida

November 4th, 2016

entobia-snail-2Technically these are “subfossils” since this appears to be an old shell still within the Holocene, although it is possibly eroded out of Pleistocene sediments and then redeposited on a Florida beach. It is a muricid snail eroded enough to erase any specific characters for further identification. It is cool because it is thoroughly bored by clionaid demosponges, producing a beautiful pattern of holes given the ichnological name Entobia Bronn 1838.

entobia-snail-1On the left side of the aperture of this snail shell is a fine reticulate pattern from an encrusting cheilostome bryozoan, also punctured by Entobia. That bryozoan is in a favored place for filter-feeding encrusters on snail shells, so it likely was there during the life of the snail.

As a trace fossil this structure would be known as Entobia. It is very common in the fossil record, especially in the Cretaceous and later.

Bronn 041616Entobia is common in the fossil record, especially in calcareous rocks and fossils from the Cretaceous on. The ichnotaxon was named (but apparently not described) in 1838 by Heinrich Georg Bronn (1800-1862), a German geologist and paleontologist we’ve met before in this blog. He had a doctoral degree from the University of Heidelberg, where he then taught as a professor of natural history until his death. He was a visionary scientist who had some interesting pre-Darwinian ideas about life’s history. He didn’t fully accept “Darwinism” at the end of his life, but he made the first translation of On The Origin of Species into German.

References:

Bromley, R.G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example. Geological Journal, Special Issue 3: 49–90.

Bronn, H.G. 1838. Lethaea geognostica: oder, Abbildungen und Beschreibung der für die Gebirgs-Formationen bezeichnendsten. E. Schweizerbart’s Verlagshandlung, Stuttgart, 545 pages.

Buatois, L., Wisshak, M., Wilson, M.A. and Mángano, G. 2016. Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth-Science Reviews (DOI: 10.1016/j.earscirev.2016.08.009).

Taylor, P.D. and Wilson, M.A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62: 1-103.

Wilson, M.A. 2007. Macroborings and the evolution of bioerosion, p. 356-367. In: Miller, W. III (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, 611 pages.