Wooster’s Fossils of the Week: A scleractinian coral and its tube-dwelling symbionts (Middle Jurassic of Israel)

April 20th, 2014

MatmorCoral010114aI have a weakness for the beautiful scleractinian corals of the Matmor Formation (Middle Jurassic, Callovian-Oxfordian) of southern Israel. This particular specimen is Microsolena aff. M. sadeki from locality C/W-367 in Hamakhtesh Hagadol, southern Israel. (The “aff.” in the name means “affinities with”. It is a way of saying this looks like a particular species, but we’re not quite sure.) This is a place we’ve now had ten Wooster Team Israel expeditions, the latest of which was last summer. The corals are a prominent part of the very diverse fossil fauna there. Note in the above side view of the specimen the star-shaped corallites (which held individual polyps) each with radiating septa. In the middle of the view you can see a narrow tube covered by coral skeleton. (More on this below.)
MatmorCoral010114bThis is a top view of the coral. It has a generally flat base and an upper surface with extended knobs. Usually this particular species is flat across the top as well as the base, giving it a platter shape as in this previous Fossil of the Week.
MatmorCoral010114cFlip the coral over and we see how it is preserved. The skeleton was originally made of the mineral aragonite, which dissolved after the death and burial of the colony. The resulting void was filled with stable calcite, preserving even fine details of the septa (see below). This delicate preservation, though, is only of the exterior of the skeleton. The interior is coarsely crystalline calcite with no trace of internal coral structures. This preservation, then, is properly called a cast, not true replacement.
MatmorCoral010114tubeThese scleractinian corals had many symbionts (organisms that lived with them). Among them were tube-dwelling worms, probably polychaetes, that spread across the surface. We know this happened while the coral was alive because, as seen above, the septa sometimes grew over the tubes. The tubes themselves are here preserved in three dimensions because they are originally calcitic and did not dissolve after death and burial.

We have much to learn about these gorgeous Jurassic fossil corals of Israel. They are virtually unstudied and offer a great opportunity for comparing them to the global Jurassic coral world.

References:

Martin-Garin, B., Lathuilière, B. and Geister, J. 2012. The shifting biogeography of reef corals during the Oxfordian (Late Jurassic). A climatic control?. Palaeogeography, Palaeoclimatology, Palaeoecology 366: 136-153.

Pandey, D.K., Ahmad, F. and Fürsich, F.T. 2000. Middle Jurassic scleractinian corals from northwestern Jordan. Beringeria 27: 3-29.

Reolid, M., Molina, J.M., Löser, H., Navarro, V. and Ruiz-Ortiz, P.A. 2009. Coral biostromes of the Middle Jurassic from the Subbetic (Betic Cordillera, southern Spain): Facies, coral taxonomy, taphonomy, and palaeoecology. Facies 55: 575-593.

Wilson, M.A., Feldman, H.R., Bowen, J.C., and Avni, Y. 2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 263: 24-29.

Wilson, M.A., Feldman, H.R. and Krivicich, E.B. 2010. Bioerosion in an equatorial Middle Jurassic coral-sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 289: 93-101.

Trackback URI | Comments RSS

Leave a Reply