Geology and art meet with a ceramic creation from the Cretaceous extinctions

In August 2010 I had a fantastic geologic field trip to the tunnels of Geulhemmmerberg, The Netherlands, to see an unusual exposure of the Cretaceous-Paleogene boundary. There I collected a fist-sized sample of the famous boundary clay, which is found in a variety of thicknesses around the world. I knew just what to do with this sticky handful: give it to my artist friend Walt Zurko at The College of Wooster. He generously made the gorgeous cup-like object above and presented it to me this week.

Walt used every scrap of the clay, even recycling the shavings back into the exterior. There were tiny rock fragments in the original clay sample. They expanded differentially during the heating process and one made a small crack at the lip. I like it — it gives the piece character, like the crack in the Liberty Bell. Walt used several techniques to produce an extraordinary patina on the outside, much of which is not adequately conveyed in my amateur image.

Now we have in the geology department at Wooster a beautiful work of art made from the most famous clay in geological history. Aren’t the liberal arts wonderful?

Inside the tunnels at Geulhemmmerberg, The Netherlands, in August 2010. The rock forming the ceiling is Paleogene and most of the walls are made of Cretaceous limestone. The Cretaceous-Paleogene boundary is visible about a third of a meter down from the top of the wall in the background.

The complicated Cretaceous-Paleogene boundary at Geulhemmmerberg, The Netherlands. This gray clay is one of the thickest boundary clays in the world. I collected a chunk from this section for Walt’s artistic creation.

Posted in Uncategorized | Tagged , , , | 5 Comments

Wooster’s Fossil of the Week: An asteroid trace fossil from the Devonian of northeastern Ohio

It is pretty obvious what made this excellent trace fossil: an asteroid echinoderm. (The term “asteroid” sounds odd here, but it is the technical term for a typical sea star.) The above is Asteriacites stelliformis Osgood, 1970, from the Chagrin Shale (Upper Devonian) of northeastern Ohio.

We can tell that it was made by a sea star burrowing straight down into the sediment because it has faint chevron-shaped marks in the rays made by tube feet as they moved sediment aside. The mounds of excavated sediment can be seen between the rays at their bases. This tells us that we are not looking at an external mold of a dead sea star, but instead its living activity. This is what a trace fossil is all about.

A living asteroid from the shallow sea off Long Island, The Bahamas. (The hand belongs to my son, Ted Wilson.)

The ichnogenus Asteriacites was named by von Schlotheim in 1820. We profiled him earlier with the genus Cornulites. The author of Asteriacites stelliformis was Richard G. Osgood, Jr., my undergraduate advisor and predecessor paleontologist at The College of Wooster.
Richard Osgood, Jr., was born in Evanston, Illinois, in 1936. He went to Princeton for his undergraduate degree (I still remember his huge Princeton ring) and received his Ph.D. from the University of Cincinnati. He worked for Shell Oil Company in Houston just prior to joining the Wooster faculty in 1967. He was one of the pioneers of modern ichnology (the study of trace fossils), naming numerous new ichnotaxa and providing ingenious interpretations of them. At least one trace fossil was named after him: Rusophycus osgoodii Christopher, Stanley and Pickerill, 1998. Dr. Osgood died in 1981 in Wooster. He was an inspiration to me and many other Wooster geology students during his productive career, which was all too short.

References:

Osgood, R.G., Jr. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana 6: 281-444.

Schlotheim, E.F. von. 1820. Die Petrfactendunde auf ihrem jetzigen Standpunkte durch die Beshreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzernreichs der Vorwelt erläutert 1-457.

Stanley, D.C.A. and Pickerill, R.K. 1998. Systematic ichnology of the Late Ordovician Georgian Bay Formation of southern Ontario, eastern Canada. Royal Ontario Museum Life Sciences Contribution 162, 56 pp., 13 pl. Toronto.

Posted in Uncategorized | Tagged , , , , | 1 Comment

Wooster’s Fossil of the Week: A mysterious sponge (Late Ordovician of Ohio)

I’ve been collecting and studying fossils from the Upper Ordovician of the Cincinnati region for three decades now, but I’ve never seen another specimen like the one pictured above. An amateur collector, Howard Freeland, generously donated this rock to Wooster late last year. He found it in Cincinnatian limestones cropping out in Brown County, Ohio.

At first Howard understandably thought he had found fish bones, which would be extraordinary for this age of rock and place of deposition. He took the slab to the Smithsonian Institution for identification by a vertebrate paleontologist. Not bones, was the answer, but they didn’t know how else to classify these finger-like fossils. When Howard showed them to me I suggested they were fossil sponges, and so here we are. I could be wrong so I hope the web community has some other ideas.

I believe these are sponge pieces because they were originally hollow (now they are filled with sediment), fibrous in structure, and had small holes irregularly preserved on their surfaces. They look in texture like the hexactinellid sponge Brachiospongia, but they do not have their distinctive thick extensions and radiating shape.

Small, irregular holes on fossil surface. They could be sponge incurrent pores. I would expect them to be more regular, though.

My search of the Ordovician sponge literature (what there is of it) has not turned up anything similar. I’ve gone to the usual websites for the Cincinnatian (like Steve Holland’s excellent Cincinnatian fossil catalog and the Dry Dredger’s webpages), but no luck.

Sometime during the existence of this webpage someone will come across these images and post their solution in the comments. I look forward to learning from them!

Reference:

Carrera, M.G. and Rigby, J.K. 1999. Biogeography of Ordovician sponges. Journal of Paleontology 73: 26-37.

 

Comment from Colin Metzler — (Comment postings no longer work for this older post.)

I really enjoyed your post and I think it may be Pyritonema subulare. I found a fossil recently just north of where this was found, that has me utterly perplexed, and perhaps a glass sponge also, if you’re up for perhaps taking a glance? [September 9, 2024]

Posted in Uncategorized | Tagged , , , | 5 Comments

Wooster’s Most Beautiful Building Stones

Wooster, OH – Volcanoclast is hosting the latest Accretionary Wedge, and since I have exactly 2 hours left until the end of January, I thought I’d post a last-minute entry. The theme is countertop geology, or more broadly, stones that are “decorative and completely detached from their origin.” My contribution is inspired by my weekly “Research Friday” routine.

Perhaps the most crucial countertop in my life is the one at the Old Main Cafe, where my Research Friday mornings begin. Photo courtesy of Matthew Gardzina.

 

While waiting on my caffeinated beverage, I admire their choice of countertop: a perthitic, alkali-feldspar-rich "red" granite.

 

Leaving Old Main, I pass the Kauke Arch (shown here packed with snow) and the Old Main patio (on the garden level below the arch), which are paved with anorthosite tiles. Photo courtesy of Matthew Gardzina.

If you look closely, you can see the striations and play of colors in the plagioclase crystals.

With my latte in hand, I make my way to the Timken Science Library.

Not only do I get to see this gorgeous granite at the Timken check-out desk, but also on the entrance floors and caps of the entryway walls.

I wonder…would my Research Friday routine be different if I weren’t an igneous petrologist?

Posted in Uncategorized | Tagged , , , | 4 Comments

Wooster’s Fossil of the Week: A syringoporid coral (Lower Carboniferous of Arkansas)

This specimen was collected from the Boone Limestone (Lower Carboniferous) near Hiwasse, Arkansas. It is a species of Syringopora Goldfuss 1826, sometimes known as the organ-pipe coral (but not the real organ pipe coral!).

Syringoporids are tabulate corals, a group that is always colonial. The corallites (tubes that contained the individual polyps) are vertical and were connected by small horizontal tubes, through which they shared common tissue. Some colonies had hundreds of corallites and built mounds up to a meter in diameter. Syringopora is the longest-ranging genus in the family, having started in the Ordovician Period and going extinct in the Permian.

Syringopora was first described by Georg August Goldfuss (1782-1848), a German paleontologist and zoologist. (Goldfuß is the proper spelling, if I can use that fancy Germanic letter.) He earned a PhD from Erlangen in 1804 and later in 1818 assumed a position teaching zoology at the University of Bonn. With Count Georg zu Münster, he wrote Petrefacta Germaniae, an ambitious attempt to catalog all the invertebrate fossils of Germany (but only got through some of the mollusks).
Georg August Goldfuß portrait by von Adolf Hohneck (1812-1879), 1841.

References:

Girty, G.H. 1915. Faunas of the Boone Limestone at St. Joe, Arkansas. U.S. Geological Survey Bulletin 598.

Goldfuß, G.A. 1826-1844. Petrefacta Germaniae. Tam ea, quae in museo universitatis Regia Borussicae Fridericiae Wilhelmiae Rhenanae servantur, quam alia quaecunque in museis Hoeninghusiano Muensteriano aliisque extant, iconibus et descriptionibus illustrata = Abbildungen und Beschreibungen der Petrefacten Deutschlands und der angränzenden Länder, unter Mitwirkung von Georg Graf zu Münster, Düsseldorf.

Nelson, S.J. 1977. Mississippian syringoporid corals, southern Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology 25: 518-581.

Posted in Uncategorized | Tagged , , , | 2 Comments

Wooster’s Fossil of the Week: Marrella splendens (Burgess Shale, Middle Cambrian, British Columbia)

The first story about this iconic fossil is the trouble I went through to get the photograph above. Our specimen of Marrella splendens is preserved in the common Burgess Shale fashion as a thin dark film on a black piece of shale. A normal photograph would show just a black rock with a grayish smudge. To increase the contrast, I coated the fossil with mineral oil and used very bright lights to capture the image. I then tweaked the contrast further with Photoshop. Curiously, a black envelope appeared around the specimen that resembles the famous dark stain found with some Burgess Shale fossils. It may be remnants of body fluids.

Before I go further, I must clarify the origins of this fossil from the Burgess Shale (Middle Cambrian) near Burgess Pass, British Columbia, Canada. I did NOT collect it. The Burgess Shale is a UNESCO World Heritage Site, so collecting there is restricted to a very small group of paleontologists who have gone through probably the most strict permitting system anywhere. I had a wonderful visit to the Burgess Shale with my friend Matthew James in 2009, and we followed all the rules. (The above is a photo of the Burgess Shale outcrop and its extraordinary setting.) Our Wooster specimen was in our teaching collection when I arrived. I suspect it was collected in the 1920s or 1930s. Marrella splendens is one of the most common Burgess Shale fossils, so no doubt there are many out there in older collections.

(Reconstruction from Stephen Jay Gould's famous Burgess Shale book titled "Wonderful Life".)

Marrella splendens is supposedly the first fossil Charles Doolittle Walcott discovered in the Burgess Shale in 1909. He called it a “lace crab”, and then later as a strange trilobite. Later work by Harry Whittington demonstrated that it was neither a crab nor a trilobite. It is likely a stem-group arthropod (near the base of arthropod phylogeny).

Marrella splendens was probably a bottom-dwelling deposit-feeder living on organic material in the seafloor sediment. There are thousands and thousands of specimens known in the Burgess Shale. They are preserved in many different angles, providing the first evidence that some sort of sedimentary mass movement was involved in the formation of this famous unit.

Walcott invented the name Marrella in honor of John Edward Marr (1857-1933). Marr was a paleontologist at Cambridge University in England. By the end of his career he was a Fellow of the Geological Society and the Royal Society, hence FGS and FRS follow his name.

Reference:

García-Bellido, D.C. and Collins, D.H. 2006. A new study of Marrella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences 43: 721-742.

Posted in Uncategorized | Tagged , , , , , | 2 Comments

Wooster’s Fossil of the Week: A scale tree (Late Carboniferous of Ohio)

We haven’t had a plant fossil in this blog for awhile. Lepidodendron Sternberg 1820, pictured above, is one of the most common fossils brought to me in Wooster by amateur collectors. It is abundant in the Upper Carboniferous (Pennsylvanian) sandstones, shales and coals in this area. People sometimes call them “fossil snakes” because they are cylindrical and appear to have scales. Appropriately, the extinct plants they represent are called “scale trees” (the literal meaning of the genus name). The fossil above is an external mold of the trunk of this tree-like organism.
A plant as large and complex as Lepidodendron has many distinctive components that are often found separate from each other in the fossil record. These parts were given their own scientific names and only relatively recently were reunited into the genus Lepidodendron. The specimen above, for example, is traditionally known as Stigmaria and represents the roots of Lepidodendron.

From Book 15 of the 4th edition of Meyers Konversationslexikon (1885-90; figure 10). Lepidodendron is the tall tree on the left.

Diagrams of the trunk leaf scars (from Lesquereux, 1879).

Lepidodendron was up to 30 meters high in Carboniferous forests. It was tree-like, branching at the top and with a trunk covered with leaf scars. They are often called “club mosses” but are really related to modern quillworts (Isoëtes). They reproduced by spores, probably only once before death.
Lepidodendron was named and described by Kaspar Maria von Sternberg (1761-1838), a Czech naturalist who virtually founded the field of paleobotany. He was a philosophy student at the University of Prague when he began to collect fossils, minerals and plants, most of which eventually formed the nucleus of the National Museum in Prague. Oddly enough, he was also a theologian and received ordination in the Catholic church. He gave up his churchly duties early, though, and worked as a full-time scientist at various institutions in Central Europe. His description of Lepidodendron came from his deep studies of the fossils associated with coal mines in Bohemia.

References:

Lesquereux, L. 1879. Atlas to the coal flora of Pennsylvania and of the Carboniferous Formation throughout the United States. Second Geological Survey of Pennsylvania, Report of Progress.

Sternberg, K.M., von. 1820-1838. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt.

Posted in Uncategorized | Tagged , , , | 1 Comment

Wooster’s Fossil of the Week: A Tully Monster! (Late Carboniferous of Illinois)

We have several examples of one of the strangest fossils known: Tullimonstrum gregarium Richardson 1966 — otherwise affectionately known as the Tully Monster. The above specimen is from the Francis Creek Shale Member (Carbondale Formation) at Mazon Creek near Chicago, Illinois. Even if it wasn’t labeled this is an easy call: all Tully Monsters are from the same place!

The above diagram is from Johnson and Richardson (1969, Fig. 63). It shows just about all we know about the morphology of Tullimonstrum gregarium. It was a soft-bodied animal preserved as an outline in ironstone concretions split in half, so we usually get this long view. They have three body regions: head, trunk and tail. The head has a stalk-like proboscis with a sharp-toothed claw on the end. The anterior of the trunk has two bar organs of unknown function (you can just barely see them on our specimen). The tail has two fins.

Above is another of our Tullimonstrum specimens, this one folded inside its concretion. The transverse bar and one of the bar organs is visible.

Tullimonstrum cannot be placed in any known phylum. It may be some kind of worm (that’s always easy to say!), a mollusk, or somehow related to the arthropods, but it has no features sufficient to classify it. It looks a bit like Opabinia, a strange beast from the Cambrian with a similar clawed proboscis. We can at least say both were swimming carnivores!

The first specimen of what would become Tullimonstrum gregarium was found by an amateur collector, Francis Tully (pictured above courtesy the Field Museum). He was collecting in waste piles from strip mines near Chicago, splitting open ironstone concretions. The concretions formed around dead and decaying organisms in a shallow embayment during the Late Carboniferous. They preserved impressions and outlines of soft tissues, making the Mazon Creek Fauna a famous lagerstätte.

A charismatic fossil like the Tully Monster gets plenty of attention. One of the best visual reconstructions is on the sides of U-Haul trucks! It is also the state fossil of Illinois.

This entry is posted, by the way, on the one-year anniversary of Wooster’s Fossil of the Week. It is the 53rd in the series. Here is the very first post, which was on a gorgeous little Devonian auloporid.

References:

Johnson, R.G. and Richardson, E.S. 1969. Pennsylvanian invertebrates of the Mazon Creek Area, Illinois: the morphology and affinities of Tullimonstrum. Fieldiana: Geology 12: 119-149.

Richardson, E.S., Jr. 1966. Wormlike fossil from the Pennsylvanian of Illinois. Science 151 (3706): 75–76.

Posted in Uncategorized | Tagged , , , | Leave a comment

Wooster’s Fossil of the Week: a siliquariid gastropod (Eocene of Alabama)

It is hard to believe that this twisty tube is a snail, but it is. Tenagodus vitis (Conrad, 1835) is the scientific name for this worm-like gastropod from the Claiborne Sand (Eocene) of Alabama. It was originally named by Conrad as Siliquaria vitis, a name still commonly used even though it was made a junior synonym by CoBabe and Allmon (1994).

This kind of gastropod with its awkward shell clearly didn’t crawl around. It was a sessile benthic epifaunal filter-feeder, meaning that it lived stationary on the seafloor filtering organic material from the water. Some of these sessile snails twisted their tubes around each other and formed a kind of gastropod reef.
The twisty part of Tenagodus vitis shows its true snaily nature.
The related Siliquaria anguina. (From Cooke et al., 1895, Cambridge Natural History, volume 3, Fig. 153.)
The discoverer of Tenagodus vitis was Timothy Abbott Conrad (1803-1877). He was a conchologist (one who studies shells) and paleontologist in New York and New Jersey, and he was a paleontological consultant during the early days of the Smithsonian Institution.

References:

CoBabe E.A. and Allmon, W.D. 1994. Effects of sampling on paleoecologic and taphonomic analyses in high-diversity fossil accumulations: an example from the Eocene Gosport Sand, Alabama. Lethaia 27: 167-178.

Conrad, T.A. 1835. Fossil shells of the Tertiary formations of North America, illustrated by figures drawn on stone by T.A.Conrad. vol. 1, no. 3, p. 29-56, pl. 15-18 (pp. 77-110, pl. 15-18 in 1893 reprint by G.D. Harris [with pl. 19-20 not included in original by Conrad], reprinted 1963 by the Paleontological Research Institution, Ithaca, NY).

Posted in Uncategorized | Tagged , , , | Leave a comment

Wooster’s Fossil of the Week: A cornulitid (Late Ordovician of Indiana)

This may look like just another wormtube on a shell — a recurring theme on this blog — but it is special, of course. This is the common Paleozoic genus Cornulites Schlotheim 1820, specifically Cornulites flexuosus (Hall 1847). It was found in the Whitewater Formation (Upper Ordovician) during a College of Wooster field trip to southeastern Indiana.

Above is a larger view of the substrate for this wormtube: the ventral valve exterior of a strophomenid brachiopod. If you look closely at the costae (fine radiating lines) of the brachiopod you can see that it was alive when the cornulitid landed on its shell. As both animals continued to grow, the wormtube bent toward the commissure (opening) of the brachiopod, no doubt to snatch some suspended food from its feeding current. The cornulitid was thus a parasite on the host brachiopod. (See Morris and Rollins, 1971; Vinn and Mutvei, 2005; and Vinn and Wilson, 2010, for much more detail on cornulitid paleoecology.)

Suggested cornulitid internal anatomy (from Olev Vinn).

Cornulitids (Ordovician – Carboniferous) belong to a large group of tube-dwelling organisms that, surprisingly, may be closely related to brachiopods and bryozoans. Cornulitids, along with fellow tube-dwellers the microconchids, tentaculitids and hederelloids, have a foliated shell ultrastructure with various other features indicating they may be part of a larger group called the lophophorates (see Taylor et al., 2010). Much work still needs to be done on their systematics and paleoecology to sort out the evolutionary relationships here, but we have a good start.
The genus Cornulites was described and named by Ernst Friedrich, Baron von Schlotheim (1764-1832), a German palaeontologist and politician born in Almenhausen, Thuringia, Germany. As a noble, he was home-schooled (as we’d say now) and then sent to the Gymnasium (like a high school) in Gotha, Germany. After graduation, he attended Göttingen where he studied political administration and the natural sciences with Johann Friedrich Blumenbach. He enjoyed geology very much and so went off to Freiburg to learn from the famous Abraham Gottlob Werner of Neptunist fame. One of his friends was the scientist-explorer Alexander von Humboldt. After this extraordinary education, Schlotheim entered the civil service in Gotha in 1792, eventually rising all the way up to Lord High Marshal a few years before his death. During his administrative work, though, he continued serious paleontological studies, being one of the first paleontologists to use Linnean binomial nomenclature, making fossils much more useful for stratigraphy and later evolutionary studies. Schlotheim had some very progressive ideas about what we would later call uniformitarianism, and he recognized that geology could tell a history of the Earth quite different from that outlined by theological scholars.

Here’s to the intellectual innovations and courage of Baron von Schlotheim and the little fossil wormtube that reminds us of him!

References:

Morris, W. R., and H. B. Rollins. 1971. The distribution and paleoecological interpretation of Cornulites in the Waynesville Formation (Upper Ordovician) of southern Ohio. The Ohio Journal of Science 71: 159-170.

Schlotheim, E.F. von. 1820. Die Petrefakten-Kunde auf ihrem jetzigen Standpunkte durch die Beshreibung seiner Sammlung versteinerter und fossiler Ueberreste des their-und Planzenreichs der Vorwelt erlaeutert. Gotha, 437 p.

Taylor, P.D., Vinn, O. and Wilson, M.A. 2010. Evolution of biomineralization in ‘lophophorates’. Special Papers in Palaeontology 84: 317-333.

Vinn, O. and Mutvei, H. 2005. Observations on the morphology and affinities of cornulitids from the Ordovician of Anticosti Island and the Silurian of Gotland. Journal of Paleontology 79: 726-737.

Vinn, O. and Wilson, M.A. 2010. Abundant endosymbiotic Cornulites in the Sheinwoodian (Early Silurian) stromatoporoids of Saaremaa, Estonia. Neues Jahrbuch für Geologie und Paläontologie 257: 13-22.

Posted in Uncategorized | Tagged , , , | 1 Comment