I was so impressed with the post by Professor Greg Wiles about his Fall 2022 Geomorphology class that I decided to highlight the Fall 2022 Paleoecology class as well. It was a great group of students, and we did an extraordinary amount of scholarly work: 26 quizzes, two tests, one final exam, two essays, a research paper, a research presentation, an extensive field project, and three other lab reports. They flourished and in turn through their research taught me quite a bit about many paleoecology topics. We were assisted throughout by our brilliant, patient, tireless, cheerful Teaching Assistant Brianna Lyman.
Early in the course we had a day-long field trip to southeastern Indiana (locality C/W-148 near Richmond) described in an earlier post. The goal was for each student to make a large collection of fossils from the upper Whitewater Formation (Upper Ordovician) that would be the raw material for a detailed paleoecological report due at the end of the semester. Nick Wiesenberg, our geological technician, was invaluable in the planning and successful completion of this little expedition.
These are the filled sample bags from the field trip, one for each student.
The next step was to wash the specimens for further analysis.
One of the student trays with typical specimens from the trip, including brachiopods, bryozoans, bivalves, gastropods, corals, cephalopods, monoplacophorans, and a few rare trilobites. There were also trace fossils, including numerous borings in the calcitic shells.
This is a completed tray at the end of the semester. Specimens are cleaned, labeled, and identified. Each student made at least two acetate peels, one from a rugose coral and the other from a bryozoan. Each student then wrote a report on the taxonomy, taphonomy, and paleoecology of their collection, supplementing their observations with the discoveries and ideas of their classmates. It was a nice mix of individual research and group discussions.
Another lab exercise detailed the ontogeny of the rugose coral Grewingkia canadensis from the same field site. We clearly have enough specimens for each student to measure the dimensions of numerous corals. They then used a statistical package (Past4) to make various graphs for interpretations.
We also had a foraminiferan “picking” exercise. Each student had a vial of sediment from a drill hole in the Gulf of Mexico (Frio Formation, Oligocene). They then collected foraminiferan tests with a thin wet brush and placed them on slide covered with water-soluble glue.
The process required careful hand-eye coordination to not lose the little critters in the transfer from sediment to tray!
This image shows a sediment vial, a picking brush, and a completed slide. Each number on the slide has a tiny specimen glued by it. The students then identified the foraminiferans and assessed the likely depth that the benthic forms lived.
The final exercise involved identifying shark teeth from the Cretaceous Menuha Formation of southern Israel. We have a large collection of these teeth from the Independent Study thesis of Andrew Retzler (’11). We used Retzler et al. (2013) as our guide for identification of these sharks and their paleoecological context.
I had an excellent time in this course with these creative, hard-working, resilient, happy students.