Wooster’s Fossil of the Week: a medullosalean pteridosperm (Upper Carboniferous of northeastern Ohio)

May 5th, 2017

It is time we had another fossil plant in this series. The above specimen is Neuropteris ovata Hoffmann 1826, a relatively common bit of foliage in the Upper Carboniferous of North America. This is a pteridosperm, more commonly known as a seed fern. They weren’t really ferns at all but fern-like plants with some of the first real seeds. They are usually reconstructed as trees, but were also known to be bushy or even like climbing vines.

The taxonomy (naming system) of fossil plants can be very complicated because different plant parts were given different names at different times. A single plant species, then, could have a list of names for its foliage, bark, roots, seeds, etc. The name Neuropteris usually thus refers to the leaves of this particular pteridosperm.

Neuropteris ovata is famous for its use in studies of the distribution of stomata on its leaf surfaces. Stomata, sometimes called guard cells, regulate gas exchange and moisture retention in vascular land plants. The density of stomata on N. ovata leaves in the Late Carboniferous may reflect changes in carbon dioxide levels and the expansion and contraction of tropical forests (Cleal et al., 1999).

Neuropteris ovata was named by Friedrich Hoffmann (1797-1836), a Professor of Geology at the University of Berlin. I wish I knew more about him because not only did he do considerable paleobotanical research, he was also well known for his work on volcanoes in Italy. You don’t see that combination very often!

References:

Beeler, H.E. 1983. Anatomy and frond architecture of Neuropteris ovata and N. scheuchzeri from the Upper Pennsylvanian of the Appalachian Basin. Canadian Journal of Botany 61: 2352-2368.

Cleal, C.J., James, R.M. and Zodrow, E.L. 1999. Variation in stomatal density in the Late Carboniferous gymnosperm frond Neuropteris ovata. Palaios 14: 180-185.

Hoffmann, F. 1826. Untersuchungen über die Pänzen-Reste des Kohlengebirges von Ibbenbühren und von Piesberg bei Osnabrück. Archiv für Bergbau und Hüttenwesen 13: 266-282.

Zodrow, E.L. and Cleal, C.J. 1988. The structure of the Carboniferous pteridosperm frond Neuropteris ovata Hoffman. Palaeontographica Abteilung Palaophytologie 208: 105-124.

[Originally posted on October 23, 2011.]

Wooster’s Fossils of the Week: Sponge and clam borings that revealed an ancient climate event (Upper Pleistocene of The Bahamas)

April 28th, 2017

This week’s fossils celebrate the publication today of a paper in Nature Geoscience that has been 20 years in the making. The title is: “Sea-level oscillations during the Last Interglacial highstand recorded by Bahamas coral”, and the senior author is the geochronological wizard Bill Thompson (Woods Hole Oceanographic Institution). The junior authors are my Smith College geologist friends Al Curran and Brian White and me.

The paper’s thesis is best told with an explanation of this 2006 image:
This photograph was taken on the island of Great Inagua along the coast. The flat dark surface in the foreground is the top of a fossil coral reef (“Reef I”) formed during the Last Interglacial (LIG) about 123,000 years ago. It was eroded down to this flat surface when sea-level dropped, exposing the reef to waves and eventually terrestrial weathering. The student sitting on this surface is Emily Ann Griffin (’07), one of three I.S. students who helped with parts of this project. (The others were Allison Cornett (’00) and Ann Steward (’07).) Behind Emily Ann is a coral accumulation of a reef (“Reef II”) that grew on the eroded surface after sea-level rose again about 119,000 years ago. These two reefs show, then, that sea-level dropped for about 4000 years, eroding the first reef, and then rose again to its previous level, allowing the second reef to grow. (You can see an unlabeled version of the photograph here.) The photograph at the top of this post is a small version of the same surface.

The significance of this set of reefs is that the erosion surface separating them can be seen throughout the world as evidence of a rapid global sea-level event during the Last Interglacial. Because the LIG had warm climatic conditions similar to what we will likely experience in the near future, it is crucial to know how something as important as sea-level may respond. The only way sea-level can fluctuate like this is if glacial ice volume changes, meaning there must have been an interval of global cooling (producing greater glacial ice volume) that lowered sea-level about 123,000 years ago, and then global warming (melting the ice) that raised it again within 4000 years. As we write in the paper, “This is of great scientific and societal interest because the LIG has often been cited as an analogue for future sea-level change. Estimates of LIG sea-level change, which took place in a world warmer than that of today, are crucial for estimates of future rates of rise under IPCC warming scenarios.” With our evidence we can show a magnitude and timing of an ancient sea-level fluctuation due to climate change.

Much of the paper concerns the dating techniques and issues (which is why Bill Thompson, the essential geochronologist, is the primary author). It is the dating of the corals that makes the story globally useful and significant. Here, though, I want to tell how the surface was discovered in the first place. It is a paleontological tale.

In the summer of 1991 I worked with Al Curran and Brian White on San Salvador Island in The Bahamas. They were concentrating on watery tasks that involved scuba diving, boats and the like, while I stayed on dry land (my preferred environment by far). I explored a famous fossil coral exposure called the Cockburntown Reef (Upper Pleistocene, Eemian) that Brian and Al had carefully mapped out over the past decade. The Bahamian government had recently authorized a new harbor on that part of the coastline and a large section of the fossil reef was dynamited away. The Cockburntown Reef now had a very fresh exposure in the new excavation quite different from the blackened part of the old reef we were used to. Immediately visible was a horizontal surface running through the reef marked by large clam borings called Gastrochaenolites (see below) and small borings (Entobia) made by clionaid sponges (see the image at the top of this post).
Inside the borings were long narrow bivalve shells belonging to the species Coralliophaga coralliophaga (which means “coral eater”; see below) and remnants of an ancient terrestrial soil (a paleosol). This surface was clearly a wave-cut platform later buried under a tropical soil.


My colleagues and I could trace this surface into the old, undynamited part of the Cockburntown Reef, then to other Eemian reefs on San Salvador, and then to other Bahamian islands like Great Inagua in the far south. Eventually this proved to be a global erosion surface described or at least mentioned in many papers, but its significance as an indicator of rapid eustatic sea-level fall and rise was heretofore unrecognized. Finally getting uranium-thorium radioactive dates on the corals above and below the erosion surface placed this surface in a time framework and ultimately as part of the history of global climate change.

This project began 25 years ago with the discovery of small holes left in an eroded surface by humble sponges and clams. Another example of the practical value of paleontology.

References:

Thompson, W.G., Curran, H.A., Wilson, M.A. and White, B. 2011. Sea-level oscillations during the Last Interglacial highstand recorded by Bahamas coral. Nature Geoscience (DOI: 10.1038/NGEO1253).

White, B.H., Curran, H.A. and Wilson, M.A. 1998. Bahamian coral reefs yield evidence of a brief sea-level lowstand during the last interglacial. Carbonates and Evaporites 13: 10-22.

Wilson, M.A., Curran, H.A. and White, B. 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31: 241-250.

[Originally posted September 11, 2011. Some updates and editing.]

Wooster’s Fossil of the Week: A Biserial Graptolite (Middle Ordovician of Tennessee)

April 21st, 2017

This week’s fossils are graptolites (from the Greek for written rocks) I found many years ago in the Lebanon Limestone near the town of Caney Springs south of Nashville, Tennessee. They are of the genus Amplexograptus and probably belong to the species A. perexcavatus (Lapworth, 1876).

Graptolites were colonial organisms consisting of hundreds and sometimes thousands of tiny zooids (individuals) connected together in a flexible proteinaceous skeleton (the rhabdosome). They first appeared in the Late Cambrian (around 510 million years ago) and disappeared forever in the Early Carboniferous (around 350 million years ago). Amplexograptus colonies were probably attached to floats so they could drift through the ancient oceans filtering out organic particles; they would be officially “passively mobile planktonic suspension feeders”. They belong to the Phylum Hemichordata, although there have always been disputes about their actual evolutionary relationships. This matters because graptolites are important index fossils for sorting out the age relationships of Lower and Middle Paleozoic rocks.

Graptolites are usually preserved as thin carbonaceous films on dark shales, making them rather hard to see (as my paleontology students will readily agree). The great 18th Century naturalist Linnaeus even said that they were “pictures resembling fossils rather than true fossils”. Sometimes, though, they are found in lighter-colored rocks like limestones, as above. Goldman et al. (2002) found Amplexograptus in limestones preserved in three dimensions, possibly because the limestones were cemented early around them before they collapsed with decay. They even studied this same species from the Lebanon Limestone. The 3-D preservation allows for a much more detailed analysis of the tiny cups (thecae) which held the individual zooids. It is possible that I could dissolve the limestone shown above and retrieve some delicate three-dimensional graptolites — but I could also just as easily destroy them.

Amplexograptus perexcavatus was originally described in 1876 by the famous geologist Charles Lapworth (1842-1920), who referred it to the genus Diplograptus. Actually, he had two species in his D. perexcavatus group, so it took some taxonomic detective and legal work to fix the current naming system. Lapworth, who I’ve figured below with an inset of his not-very-helpful diagram of the original D. perexcavatus, is well known by paleontologists for his work with graptolites as index fossils. Scientists and historians of science know him as the man who invented the Ordovician Period in 1879 to solve a bitter dispute between Roderick Murchison and Adam Sedgwick who each claimed the same rock interval in Wales for the Silurian and Cambrian periods respectively. Lapworth’s primary biostratigraphic argument for the Ordovician as a separate period was the distribution of graptolites, including our friend Amplexograptus perexcavatus. (Murchison and Sedgwick were long gone by the time their dispute was settled.)

(Charles Lapworth. Image courtesy of The Lapworth Museum of Geology.)

References:

Goldman, D., Campbell, S.M. and Rahl, J.M. 2002. Three-dimensionally preserved specimens of Amplexograptus (Ordovician, Graptolithina) from the North American mid-continent: taxonomic and biostratigraphic significance. Journal of Paleontology 76: 921-927.

Lapworth, C. 1876. The Silurian System in the South of Scotland, p. 1–28. In: Armstrong, J. Young, J. and Robertson, D. (eds.), Catalogue of Western Scottish Fossils. Blackie and Son, Glasgow.

[Originally posted August 28, 2011]

Wooster’s Fossil of the Week: A Conulariid (Lower Carboniferous of Indiana)

April 14th, 2017

I have some affection for these odd fossils, the conulariids. When I was a student in the Invertebrate Paleontology course taught Dr. Richard Osgood, Jr., I did my research paper on them. I had recently found a specimen in the nearby Lodi City Park. It was so different from anything I had seen that I wanted to know much more. I championed the then controversial idea that they were extinct scyphozoans (a type of cnidarian including most of what we call today the jellyfish). That is now the most popular placement for these creatures today, although I arrived at the same place mostly by luck and naïveté. (I love the critical marks in that word! And yes, I always have to look them up.)

The specimen above is Paraconularia newberryi (Winchell) found somewhere in Indiana and added to the Wooster fossil collections before 1974. (The scale below it is in millimeters.) A close view (below) shows the characteristic ridges with a central seam on one of the sides.
Conulariids range from the Ediacaran (about 550 million years ago) to the Late Triassic (about 200 million years ago). They survived three major extinctions (end-Ordovician, Late Devonian, end-Permian), which is remarkable considering the company they kept in their shallow marine environments suffered greatly. Why they went extinct in the Triassic is a mystery.

The primary oddity about conulariids is their four-fold symmetry. They had four flat sides that came together something like an inverted and extended pyramid. The wide end was opened like an aperture, although sometimes closed by four flaps. Preservation of some soft tissues shows that tentacles extended from this opening. Their exoskeleton was made of a leathery periderm with phosphatic strengthening rods rather than the typical calcite or aragonite. (Some even preserve a kind of pearl in their interiors.) Conulariids may have spent at least part of their life cycle attached to a substrate as shown below, and maybe also later as free-swimming jellyfish-like forms.

It is the four-fold symmetry and preservation of tentacles that most paleontologists see as supporting the case for a scyphozoan placement of the conulariids. Debates continue, though, with some seeing them as belonging to a separate phylum unrelated to any cnidarians. This is what’s fun about extinct and unusual animals — so much room for speculative conversations!

[Thanks to Consuelo Sendino of The Natural History Museum (London) for correcting the age range of these fascinating organisms.]

References:

Hughes, N.C., Gunderson, G.D. and Weedon, M.J. 2000. Late Cambrian conulariids from Wisconsin and Minnesota. Journal of Paleontology 74: 828-838.

Van Iten, H. 1991. Evolutionary affinities of conulariids, p. 145-155; in Simonetta, A.M. and Conway Morris, S. (eds.). The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.

[Modified from an original post on July 31, 2011]

Wooster’s Fossils of the Week: Bivalve escape trace fossils (Devonian and Cretaceous)

April 7th, 2017

It is time again to dip into the wonderful world of trace fossils. These are tracks, trails, burrows and other evidence of organism behavior. The specimen above is an example. It is Lockeia James, 1879, from the Dakota Formation (Upper Cretaceous). These are traces attributed to infaunal (living within the sediment) bivalves trying to escape deeper burial by storm-deposited sediment. If you look closely, you can see thin horizontal lines made by the clams as they pushed upwards. These structures belong to a behavioral category called Fugichnia (from the Latin fug for “flee”). They are excellent evidence for … you guessed it … ancient storms.
The specimens above are also Lockeia, but from much older rocks (the Chagrin Shale, Upper Devonian of northeastern Ohio). Both slabs show the fossil traces preserved in reverse as sediment that filled the holes rather than the holes themselves. These are the bottoms of the sedimentary beds. We call this preservation, in our most excellent paleontological terminology, convex hyporelief. (Convex for sticking out; hyporelief for being on the underside of the bed.)

The traces we know as Lockeia are sometimes incorrectly referred to as Pelecypodichnus, but Lockeia has ichnotaxonomic priority (it was the earliest name). Maples and West (1989) sort that out for us.
Uriah Pierson James (1811-1889) named Lockeia. He was one of the great amateur Cincinnatian fossil collectors and chroniclers. In 1845, he guided the premier geologist of the time, Charles Lyell, through the Cincinnati hills examining the spectacular Ordovician fossils there. He was the father of Joseph Francis James (1857-1897), one of the early systematic ichnologists.

References:

James, U.P. 1879. The Paleontologist, No. 3. Privately published, Cincinnati, Ohio. p. 17-24.

Maples, C.G. and Ronald R. West, R.R. 1989. Lockeia, not Pelecypodichnus. Journal of Paleontology 63: 694-696.

Radley, J.D., Barker, M.J. and Munt, M.C. 1998. Bivalve trace fossils (Lockeia) from the Barnes High Sandstone (Wealden Group, Lower Cretaceous) of the Wessex Sub-basin, southern England. Cretaceous Research 19: 505-509.

[Originally published January 29, 2012]

Wooster’s Fossils of the Week: A slab of Upper Ordovician bivalves from northern Kentucky

March 31st, 2017

Earlier this month, Luke Kosowatz, Matt Shearer and I went on a field trip through the Cincinnati region collecting Upper Ordovician (Katian) bryozoans and examples of bioerosion for their Independent Study projects and other investigations. I picked up the above slab and put it in our vehicle for future study not because of its beauty, but the preservational modes it displays. The black, rounded objects are bivalves, probably of the Order Modiomorphida. They are miserable fossils to identify because they originally had shells made of the mineral aragonite, which dissolved quickly after the animals died. What is left are a few scrappy molds and that black film. This is a common preservation of bivalves in the Cincinnatian.

This is the Corryville Formation outcrop from which the slab came. It is just west of Maysville, Kentucky, along the AA Highway (N 38.60750°, W 83.76775°; C/W-740).

Here is the slab along the roadside before we cleaned it up. Not much to see, really, except the low-relief black blobs that are remains of bivalves.

As you see, not much detail in the bivalves other than an outline matching somewhat the modiomorphids. Those of you with sharp paleontological eyes will note a round gray patch with radiating lines. This is a bryozoan that was attached to the bivalve shell. When the shell dissolved, the bryozoan attachment surface became visible. In other words, this is an upside-down encrusting bryozoan, a condition we’ve seen several times in this blog.

Here’s another bivalve with an upside-down encrusting bryozoan. This time you can see that the black film was underneath the bryozoan and on the outside of the bivalve shell. In a 2004 paper, Tim Palmer and I wrote: “We have also long been curious about why some of the epifaunal aragonitic Ordovician genera in the Cincinnatian such as Modiolopsis are preserved with a thick black outer shell covering (e.g. Pojeta 1971, pl. 15, fig. 6). It now seems likely that this was a hypertrophied periostracum that conferred some protection against dissolution during life, similar to the situation seen in Recent unionids that are susceptible to dissolution in their fresh-water habitats” (p. 425). Maybe it’s time we followed up on these speculations? I’m sure other paleontologists have had similar ideas.

Among the indistinct modiomorphid bivalves is this old friend: Ambonychia with its characteristic radiating ridges.

References:

Palmer, T.J. and Wilson, M.A. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia 37: 417-427.
Pojeta, J. 1971. Review of Ordovician pelecypods. United States Geological Survey, Professional Paper 695, 1-46.

Wooster’s Fossils of the Week: Strophomenid brachiopods from the Upper Ordovician of southern Ohio

March 24th, 2017

Usually I find fossils in the field or lab and then craft a Fossil of the Week entry around them. This time, though, I started with a paper and then searched for fossils to illustrate it. I found this recent paper very well done:

Bauer, J.E. and Stigall, A.L. 2016. A combined morphometric and phylogenetic revision of the Late Ordovician brachiopod genera Eochonetes and Thaerodonta. Journal of Paleontology 90: 888-909.

It does classic systematics on a group of brachiopods with the modern tools of morphometric and phylogenetic analyses. Its conclusions are direct and convincing: The genus Thaerodonta is synonymous with Eochonetes, and a variety of species are shifted around, solving problems that have lingered for over a century, Plus as a bonus, who can’t love a new species named Eochonetes voldemortus? So I set out to find specimens of this brachiopod group in our collections. Above are internal valve views of the brachiopod Eochonetes clarksvillensis (Foerste, 1912), showing characteristic denticles (little teeth) along the hinge line. Below are external valve views. Jen Bauer herself kindly confirmed the identifications!

These specimens come from the Waynesville Formation (Katian) exposed at Caesar Creek in southern Ohio, a place we have had many paleontology field trips. E. clarksvillensis is common in the Waynesville and overlying Liberty formations. Read much more about it in Bauer and Stigall (2016).

The genus Eochonetes was named by Frederick Richard Cowper Reed in 1917 from the Ordovician of Scotland. (The British Isles were not too far away from Ohio in the Late Ordovician.) Reed was born in London in 1869 and died in Cambridge, England, in 1946. I tried mightily but could find no images of him to enter into the digital archives of the web. He was a smart and diverse geologist, attending Trinity College, Cambridge, and winning important awards and scholarships. He was appointed assistant to the Woodwardian Professor of Geology at Cambridge in 1892, a position he kept until retirement. In 1901 he earned the Sedgwick Prize for his work on the rivers of East Yorkshire, wrote a book on the geology of the British Empire (much easier to do today!), and yet still found time to describe fossils in numerous papers.

The author of Eochonetes clarksvillensis is much better known to paleontologists of the Cincinnati region. It is August F. Foerste (1862-1936), who named Thaerodonta clarksvillensis in 1912. Foerste grew up and worked in the Dayton, Ohio, area, graduating from Denison University after publishing many papers as a student. He returned to Dayton after earning a PhD from Harvard, teaching high school for 38 years. When he retired he turned down a teaching position at the University of Chicago and instead worked at the Smithsonian Institution until the end of his life. He is one of the giants of the Cincinnati School of paleontology.

References:

Bauer, J.E. and Stigall, A.L. 2016. A combined morphometric and phylogenetic revision of the Late Ordovician brachiopod genera Eochonetes and Thaerodonta. Journal of Paleontology 90: 888-909.

Reed, F.R.C. 1917. The Ordovician and Silurian Brachiopoda of the Girvan District: Transactions of the Royal Society of Edinburgh 51: 795–998.

Wooster’s Fossil of the Week: A large trepostome bryozoan on a nautiloid conch (Upper Ordovician of northern Kentucky)

March 17th, 2017

This massive trepostome bryozoan, a solid lump of biogenic calcite, was collected earlier this week on the latest Team Cincinnati field expedition into the treasure-filled Upper Ordovician underlying and surrounding that city. Wooster students Matt Shearer, Luke Kosowatz and I are pursuing projects related to trepostome bryozoans and bioerosion (the biological destruction of hard substrates). The above specimen combines both these worlds, and more. Note the concavity at the base of the specimen. It comes from the Bellevue Formation (Katian) exposed on Bullitsville Road near the infamous Creation Museum (C/W-152).

Underneath the bryozoan colony (its zoarium) is this conical impression. It is an external mold of a straight nautiloid conch, the shell of a common squid-like cephalopod during the Ordovician. After the death of the nautiloid its empty tubular conch rested on the seafloor. This hard surface attracted the larvae of a variety of bryozoans that spread their calcitic zoaria (colonial skeletons) across the surface. Eventually one trepostome bryozoan species gained dominance over the space and occupied it all, growing into the large colony we see today. It even wrapped around the aperture of the conch (on the left) and grew a bit into the tube. Since the nautiloid conch was made of unstable aragonite, it long ago dissolved away, leaving an impression (external mold) in the stable calcite of the bryozoan.

How do we know there were earlier generations of bryozoans on this conch? We see them exposed upside-down on the surface of the external mold. Above we see the thin, branching cyclostome bryozoan Cuffeyella in the foreground, with a sheet of an encrusting trepostome bryozoan in the background. There are several other earlier bryozoans visible on this surface, revealing an ecological succession. There may be soft-bodied organisms preserved on this surface as well. This locality yielded the first described specimens of bioimmuration in the Ordovician (see Wilson et al., 1994).

There were other large trepostome bryozoans found in this same locality. I couldn’t resist cutting one in half to see what the inside looked like.

In this close view of the cross-section through the calcitic trepostome bryozoan we see numerous round holes drilled by some sort of worm seeking protective space so it could filter-feed. (In other words, it was not preying on the bryozoan.) The most intense boring of the specimen appears to have taken place just before and after the death of the colony. We know some borings were excavated into living bryozoan skeleton because the bryozoan formed reactive tissue around the intruder. The very tiny reddish-brown dots scattered in layers are “brown bodies“, the organic remnants of bryozoan polypides in their skeletal tubes (zooecia).

It has been a pleasure to return to the extraordinary Cincinnati fossils!

References:

Taylor, P.D. 1990. Preservation of soft-bodied and other organisms by bioimmuration—a review. Palaeontology 33: 1-17.

Wilson, M.A. 1985. Disturbance and ecologic succession in an Upper Ordovician cobble-dwelling hardground fauna. Science 228: 575-577.

Wilson, M.A., Palmer, T.J. and Taylor, P.D. 1994. Earliest preservation of soft-bodied fossils by epibiont bioimmuration: Upper Ordovician of Kentucky. Lethaia 27: 269-270.

Team Cincinnati moves into Kentucky for additional fieldwork

March 12th, 2017

Maysville, Kentucky — It was another frigid morning under the clear, pitiless skies of the Cincinnati region, but Luke Kosowatz (’17) was in good spirits. He is collecting at our first stop of the day: an exposure of the Bellevue Formation (Upper Ordovician, Katian) along the Bullitsville Road in northern Kentucky (N 39.08121°, W 84.79230°; C/W-152). Luke is sorting out bioeroded bryozoans and brachiopods here.

Matt Shearer (’18) joins Luke on the outcrop. If the place looks familiar it’s because William Harrison (’15) and I were here almost exactly three years ago.

In cosmic irony, the Bullitsville outcrop is nearly a neighbor of the Creation Museum. It was closed this Sunday morning — who would have guessed? Do Creationists ponder the fact that their pseudoscientific establishment sits on an incredible record of fossils 450 million years old? They do indeed: “These conditions and processes would be expected during the global catastrophic Flood described in the Scriptures. The thin alternating coarse-grained limestone and fine-grained shale layers could be deposited quickly under such catastrophic conditions.” Of course.

We were also near Big Bone Lick State Park, the birthplace of American vertebrate paleontology.

This site has an excellent life-sized diorama of Late Pleistocene animals (mammoths, mastodons, bison, ground sloths and even vultures) getting mired in bogs infused with salty water.

Team Cincinnati then traveled east for about an hour to the magnificent exposures of the Cincinnatian Group around Maysville, Kentucky. Here we targeted the Corryville Formation exposed along the AA Highway (N 38.60750°, W 83.76775°).

As with all our sites, the fossils are extraordinary. This is an ordinary slab of limestone from the Corryville with dozens of well-preserved strophomenid brachiopods.

For nostalgia on my part, we visited an outcrop along US 62 at the southern edge of Maysville where the Corryville Formation is again exposed (N 38.60932°, W 83.81070°). It is at this site that I collected a cave-dwelling bryozoan fauna now the subject of a manuscript Caroline Buttler (National Museum Wales) and I are finishing up this month. The cave interval was destroyed by later roadwork, but the remaining outcrops were superb for our purposes.

We ended the field day about seven kilometers north at another outcrop of the Corryville along US 62 (N 38.6445°, W 83.77678°).  I was so distracted by the diversity of fossils that I forgot to take pictures!

Dinner was at El Caminante Mexican Restaurant in Maysville. It was so good we are compelled to recommend it to future geological visitors.

Wooster Geologists launch Team Cincinnati 2017

March 11th, 2017

Harrison, Ohio — Our first fieldwork of the year started on this cold, cold March day in southeastern Indiana. (Note the white icicles on the outcrop.) Luke Kosowatz, Matt Shearer and I have begun our projects in the magnificent Cincinnatian Group (Upper Ordovician, Katian) with its fantastic fossils on the first day of Wooster’s spring break. Despite the sunlight, it was 19°F when we had to leave the warm vehicle to start collecting fossils at our first stop shown above. This is the US 27 roadcut outside Richmond, Indiana, beloved by paleontologists (N 39.78631°, W 84.90318°). Here the lower Whitewater Formation is well exposed and weathered just right to release millions of fossils from their rocky tombs. Luke is studying patterns of bioerosion (almost entirely borings) in the Cincinnatian for his Independent Study thesis, and Matt is examining the distribution of bryozoan taxa for his I.S. work. We’ll have more details on their investigations later.

Today we started at the top of the Cincinnatian Group and worked our way down section as we moved south through Indiana towards the Ohio River. One of our sites was the Brookville Lake Dam emergency spillway exposure, seen above on the other end of the dam.

We climbed up the dam itself to get to the spillway exposure, which is magnificent. We did not collect here, though, because we couldn’t assure tight stratigraphic control of our specimens. There is too much downslope movement of fossils and rocks at this site for us to be certain about the horizons from which the fossils came.

Southgate Hill is a spectacular series of roadcuts north of St. Leon, Indiana (N 39.33909°, W 84.95306°). Matt and Luke are here collecting from the top of the Waynesville Formation.

Our last outcrop of the day was at the top of this sequence of limestones and shales exposed at another large roadcut, this one near Lawrenceburg, Indiana (N 39.09863°, W 84.87683°). At the very top is the rubbly Bellevue Formation, from which we collected magnificent trepostome bryozoans, many with beautiful borings.

Despite the temperatures, we had fun today and look forward to another three days of field paleontology in what must be the most fossiliferous rocks in the world. We are fortunate to live so close to these treasures.

« Prev - Next »