Wooster’s Fossils of the Week: calcareous sponges from the Middle Jurassic of southern Israel

September 18th, 2015

1 Four Matmor SpongesThis post is in honor of Yael Leshno, a graduate student at The Hebrew University of Jerusalem who is beginning her dissertation on the Middle Jurassic marine fossils of Israel. I’m proud to be on her committee. She will have some fascinating material to work with, and she has great ideas to test. This will be a fun and productive project.

Among the Jurassic groups Yael will concentrate on are the calcareous sponges. This is ambitious because they are poorly known and the literature is replete with outdated names and concepts. Her work will be of great value, though, because sponges can tell us a lot about the environments in which they flourished. They may also give us much needed information on the biogeographical context of the Jurassic faunas of the Middle East.

Above are four sponges from the Matmor Formation (Callovian, Middle Jurassic) of Makhtesh Gadol, southern Israel. These types of sponge are fun because they actually look like sponges with their porous exteriors and central osculum (excurrent hole). They are the least complicated type of fossil sponge. (Yael will see plenty of the challenging ones!)
2 Matmor calcisponge Peronidella 585In this closer view of one of the Matmor sponges you can see the complex spicular network of the exterior (the structure that held the living cells). You will also note near the base the coiled tube of a sabellid worm named Glomerula gordialis (Schlotheim, 1820).
3 Matmor Peronidella osculum 585Here is a top view looking into the osculum of the largest specimen. Sponges are filter-feeders, sucking in water through their exterior pores, filtering the organic material out, and then sending the used water out an osculum like this.

This sponge type is traditionally named Peronidella Hinde, 1893; it would be then placed within the Family Peronidellidae WU, 1991. I’m suspicious of this name because it used for sponges from the Devonian through the Cretaceous, so it is likely a form-genus (meaning a named form that may not have particular systematic value). Yael will no doubt section these common Matmor sponges and find enough internal detail to come up with a more useful name.
4 GJ Hinde imageGeorge Jennings Hinde (1839-1918; image from Woodward, 1918) named the fossil sponge genus Peronidella in 1893. Hinde grew up in a farming family in Norwich, England. He was clearly a self-starter, studying classical languages and science on his own as a boy. When he was about 16 he listened to a lecture given by a clergyman on the Scottish geological polymath Hugh Miller (1802-1856), who had recently died tragically. Hinde was intrigued and began to explore geology. In 1862, after beginning his own farming, Hinde visited the geological collection at the British Museum in London. He began an acquaintance there with a family relative, the famous geologist and paleontologist Henry Woodward (1832-1921). In that same year Hinde sold his farm and moved to Argentina to raise sheep. A few years later he traveled to North America and began an epic seven years studying geology, traveling across the eastern half of the continent. (He must have had a considerable source of income for this!) He enrolled as a student in Toronto University under the paleontologist H.A. Nicholson (1844–1899) and began to produce his first geological papers. When he returned to England in 1874 he was elected a Fellow of the Geological Society of London. He continued to travel, this time over much of Europe and the Middle East. In 1880 he finished his PhD under Professor Karl Alfred Ritter von Zittel (1839-1904). He had a long career after that with numerous papers and scientific awards. Long et al. (2003) adds to this biography that Hinde very much wanted women to be allowed membership in the Geological Society of London, a point neglected in the obituary by Henry Woodward (1918). Hinde did not, alas, live to see the success of his progressive quest. The first woman was elected a Fellow of the GSL on May 21, 1919, a little more than a year after his death.


Hinde, G.J. 1893. A monograph of the British fossil sponges, Part III. Sponges of the Jurassic strata, p. 189-254. The Palaeontographical Society, London.

Hurcewicz, H. 1975. Calcispongea from the Jurassic of Poland. Acta Palaeontologica Polonica 20: 223-291.

Long, S.L., Taylor, P.D., Baker, S. and Cooper, J. 2003. Some early collectors and collections of fossil sponges represented in The Natural History Museum, London. The Geological Curator 7: 353-362.

Vinn, O. and Wilson, M.A. 2010. Sabellid-dominated shallow water calcareous polychaete tubeworm association from the equatorial Tethys Ocean (Matmor Formation, Middle Jurassic, Israel). Neues Jahrbuch für Geologie und Paläontologie 258: 31-38.

Woodward, H. 1918. Obituary: George Jennings Hinde, Ph.D.(Munich), FRS, FGS, VP Pal. Soc. Geological Magazine (Decade VI) 5: 233-240.

Zittel, K.A. 1879. Studien über fossile Spongien, Teil 3. — Bayer. Akad. d. Wiss., math. naturwiss Cl. Abb. 13: 91-138.

Wooster’s Fossil of the Week: A starry bryozoan from the Upper Ordovician of southern Ohio

September 11th, 2015

Constellaria polystomella Liberty Formation 585At this time of the year I pick out one interesting specimen from the fossils my Invertebrate Paleontology class collected on their first field trip into the Upper Ordovician of southern Ohio. They did so well this week that I may be choosing a few more later! Our Fossil of the Week is the above bryozoan given the beautiful name Constellaria polystomella Nicholson, 1875. It was found by Jacob Nowell at the Caesar Creek Emergency Spillway in the Liberty Formation.
Constellaria Liberty closerConstellaria is a beautiful form, and one of the easiest bryozoans to recognize. Like all bryozooans, it was a colonial invertebrate with hundreds of filter-feeding individuals (zooids) housed in tiny tubes called zooecia. In Constellaria some of the zooecia are regularly grouped together and raised into star-shaped bumps called monticules. (The name Constellaria is clever.) This genus is a cystoporate bryozoan in the Family  Constellariidae.
JD Dana by Daniel Huntington 1858I was surprised to learn that Constellaria was named in 1846 by James Dwight Dana (1813-1895), one of the most accomplished American scientists of the 19th Century. He is best known for his Manual of Mineralogy (1848) which is still in print (greatly revised) and known as “Dana’s Mineralogy”. Dana (shown above in 1858) studied geology on scales from crystal structures to continents, with volcanoes and mountain-building in between. He had an affinity for “Zoophytes” (animals that appear to be plants), thus entangled him briefly with bryozoan systematics. Dana was born in Utica, New York, and attended Yale College, working under Benjamin Silliman, a famous chemist and mineralogist. After graduating from college he had a cool job teaching midshipmen in the US Navy, sailing through the Mediterranean in the process. For four years he served in the United States Exploring Expedition in the Pacific region. He made numerous important geological observations in Hawaii and the Pacific Northwest that he later published in books and papers. He even dabbled in theology with books like Science and the Bible: A Review of the Six Days of Creation (1856). Dana died in 1895 having received numerous accolades and awards for his research and writing.


Brown, G.D., Jr., and Daly, E.J. 1985. Trepostome bryozoa from the Dillsboro Formation (Cincinnatian Series) of southeastern Indiana. Indiana Geological Survey Special Report 33: 1-95.

Cutler, J.F. 1973. Nature of “acanthopores” and related structures in the Ordovician bryozoan Constellaria. Living and Fossil Bryozoa. Academic Press, London, 257-260.

Dana J.D. 1846. Structure and classification of zoophytes. U.S. Exploring Expedition 1838-1842, 7: 1-740.

Wooster Paleontologists return to Caesar Creek Lake

September 6th, 2015

1 Shoreside collecting 090615Ohio is a wonderful place for paleontologists. One of the reasons is the thick, productive set of Upper Ordovician rocks that are exposed in the southwest of the state in and around Cincinnati. It is an easy drive south from Wooster into some of the most fossiliferous sediments in the world. Today Wooster’s Invertebrate Paleontology class went to Caesar Creek Lake in Warren County with its shoreline and emergency spillway exposing richly productive limestones and shales of the Waynesville, Liberty and Whitewater Formations (all of which equal the Bull Fork Formation). I’ve been there many times with many classes. The weather today was hot and dry — a contrast with last year’s torrential rains and mud.

2 Caesar Creek Lake Visitor Center MS 090615After a three-hour drive, we stopped first at the U.S. Army Corps of Engineers visitor center for Caesar Creek Lake. The Corps built the dam and spillway for the lake, and continues to maintain them both. This center has a set of museum displays and is where we obtain our fossil collecting permit. (This image was taken by Mara Sheban, a sophomore at The College of Wooster who will be contributing photographs to this blog and other geology projects.)

3 Initial briefing MS 090615Our initial briefing, with a review of the local geology and most common fossils. Since this is the start of the Invertebrate Paleontology course, most students have only begun to explore the topic. The fossils they collect on this trip will be the basis of a semester-long project of systematics and paleoecological analysis. (Photo by Mara Sheban.)

4 Marching to the outcrop 090615Our march to the far north of the exposures at the Caesar Creek Lake emergency spillway. We actually drop down from the spillway to the lake’s south shore. (See photo at the top of this post.) In the distant parking lot you can just make out a white pick-up truck in which the seasonal ranger is keeping an eye on us.

5 Jacob Nowell collecting MS 090615Jacob Nowell collecting small fossils washed from the shale along the lakeshore. (Photo by Mara Sheban.)

6 Jacob Pries trilobite MS 090615Jacob Pries found a nice enrolled Flexicalymene trilobite. Caesar Creek has a reputation as being a good place to find trilobites. We love them, but are also interested in the rest of the fossil fauna. (Mara Sheban image.)

7 Brachiopod hash 090615Some of the limestone units are a nearly solid hash of cemented brachiopod shells.

8 Hardground full view 0090616My favorite slabs at Caesar Creek Lake are the abundant carbonate hardgrounds like the above. A hardground is a cemented seafloor, usually with borings and encrusting organisms. This one began as a burrowed soft carbonate sediment. The burrows were filled with fine mud that cemented early on the seafloor. The surrounding softer matrix washed away, leaving a hardground with the burrows now in positive relief. Brachiopods and corals then lived in the nooks and crannies of this hard rock on the bottom of the sea.

9 Hardground closer 090615Here is the burrow system in a closer view. In the upper right is a beautiful encrusted rugose coral, shown in detail below.

10 Bryo encrusted rugosan 090615That coral is almost completely covered by a trepostome bryozoan. I would have loved to collect this specimen for further study, but the slab is too large and no tools are allowed on this outcrop.

In the coming weeks we will identify the fossils we gathered, apply to them several paleontological techniques such as cleaning, cutting, polishing and photography, and then put together a grand paleoecological analysis. We will be greatly assisted by two fantastic websites, one by Alycia Stigall at Ohio University called The Digital Atlas of Ordovician Life, and the other by Steve Holland at the University of Georgia titled The Stratigraphy and Fossils of the Upper Ordovician near Cincinnati, Ohio.

Wooster’s Fossil of the Week: A mystery fossil for my Invertebrate Paleontology students

September 4th, 2015

1 Stereolasma singleAt the beginning of my Invertebrate Paleontology course I give each student a fossil to identify by whatever means necessary. I challenge them to take it down to the species level, and tell me its age and likely place of collection. The fossil this year is shown above: the rugose coral Stereolasma rectum (Hall, 1843) from the Middle Devonian of New York. I collected the specimens on my western New York adventure last month from the Wanakah Shale Member of the Ludlowville Formation at Buffalo Creek in Erie County. (There were a lot of them! This coral is so common that you can buy them online at science supply stores.)

The corals I collected were well weathered on the Devonian seafloor. You can see some evidence of this in the exterior which shows opened tunnels of borings. They were not appreciably weathered on the outcrop because they were directly excavated from the shale matrix.
2 Stereolasma cross section 585This is a cross-section through one of the S. rectum specimens. The internal radiating calcitic partitions (septa) are well preserved by clear calcite cement. There appear to be at least two generations of sediment that penetrated into the interior after the death of the polyp. The posthumous events affecting these corals may be more interesting than their life histories.

That awkward species name comes from the Latin rectus for “straight”. The anatomical rectum that we all know well comes from the same root but is based on a misconception by early anatomists that the terminal part of the large intestine in mammals is straight. It’s not, as a Google search will quickly show you. (I decided against including an image.)
3 Wanakah coralsReferences:

Baird, G.C. and Brett, C.E. 1983. Regional variation and paleontology of two coral beds in the Middle Devonian Hamilton Group of Western New York. Journal of Paleontology 57: 417-446.

Brett, C.E. and Baird, G.C. 1994. Depositional sequences, cycles, and foreland basin dynamics in the late Middle Devonian (Givetian) of the Genesee Valley and western Finger Lakes region. In: Brett, C.E., and Scatterday, J., eds., Field trip guidebook: New York State Geological Association Guidebook, no. 66, 66th Annual Meeting, Rochester, NY, p. 505-585.

Busch, D.A. 1941. An ontogenetic study of some rugose corals from the Hamilton of western New York. Journal of Paleontology 15: 392-411.

Stumm, E.C. and Watkins, J.L. 1961. The metriophylloid coral genera Stereolasma, Amplexiphyllum, and Stewartophyllum from the Devonian Hamilton group of New York. Journal of Paleontology 35: 445-447.

Wooster’s Fossil of the Week: An encrusted and bored oyster from the Upper Jurassic of northern England

August 28th, 2015

1 Passage Beds Oyster shell bored 585This week’s fossil is a celebration of classes beginning again at Wooster, and a memory of excellent summer fieldwork. It isn’t especially attractive, but it has paleontological significance. We are looking at a broken surface through a thick oyster from the Passage Beds Member of the Coralline Oolite Formation (Upper Jurassic, Oxfordian) exposed on the north side of Filey Brigg, North Yorkshire, England. It was collected by Meredith Mann (’16) as part of her Senior Independent Study research in June. One of her project goals is to assess the sclerobionts (encrusters and borers) that lived on and within hard substrates in this interval. This thick shell is a start.
2 Passage Beds borings 585In this closer view we can see three rounded objects penetrating the oyster shell. These are bivalve borings called Gastrochaenolites. They were open holes excavated by drilling bivalves that were later filled with sediment and cement.
3 Passage oyster encrusters 585The outer surface of the oyster shell is covered with encrusting oysters and serpulid worm tubes. These will be more visible later after Meredith prepares the specimens. The first thing she is likely to do is use some bleach to remove the modern marine algae. Our specimens were all collected near the high-water tide level on the rocky north coast of Filey Brigg (N54.21823°, W00.26904°).
4 Meredith Passage Beds  072415Meredith is here standing against the Passage Beds Member on June 14, 2015. Her feet are on the top of the underlying Saintoft Member of the Lower Calcareous Grit Formation. About a meter and a half above her head is the base of the overlying Hambleton Oolite Member (Lower Leaf) of the Coralline Oolite Formation. As we took this photo the sea was pounding behind us on a rising tide.
5 Passage Unit 1 fossils 072415Here is a cluster of oysters preserved in the lowest unit of the Passage Beds. It is a sandstone distinct from the overlying limestones. There is much evidence of high-energy transportation of shelly material.
6 Meredith collection 072315Here are Meredith’s specimens from this site, all cleaned and in stratigraphic order. A critical part of her work will be a petrographic analysis of the Passage Beds Member. We hope to show you these thin-sections next month.
7 Meredith Filey Brigg point 072415Meredith celebrating the end of her fieldwork as she confronts the rising sea on the tip of Filey Brigg (N54.21560°, W00.25842°).

Wooster’s Fossil of the Week: A blastoid from the Lower Carboniferous of Illinois

August 21st, 2015

Pentremites IL 585It is sometimes hard to believe that exquisite fossils such as the above are sometimes very common. The above is a theca of the blastoid Pentremites godoni (DeFrance, 1819) found in the Lower Carboniferous (Mississippian) of Illinois. (Thanks to expert Colin Sumrall for the identification.) In some places these fossils can be picked up by the hundreds.

Blastoids are stemmed echinoderms that appeared first in the Ordovician and went extinct at the end of the Permian. They were most diverse and abundant in the shallow carbonate seas of the Lower Carboniferous, especially in North America. They are much beloved and studied fossils.
Pentremites IL basal 585The basal side of the above theca shows that blastoids had a small circular stem attachment, much like their cousins the crinoids. They extended numerous feeding appendages (brachioles) from their ambulacra (the five “petals” on the upper surface and sides) for filter-feeding. The theca is made of calcitic plates that are tightly fused together, thus ensuring they survive the vicissitudes of preservation.
Pentremites close 585In this close view of the top of the theca are five holes (spiracles) surrounding a central pit (the mouth) One spiracle (in the upper right) is larger than the others. It contains the anus and is thus called an anispiracle. The spiracles are openings into the interior of the theca, which contained a complexly-folded respiratory system called the hydrospire.

Pentremites godoni has a complicated taxonomic history. The original type specimen of the species (a specimen used as the definition of the species — a Platonic ideal form!) was destroyed in the middle of the 19th Century in a museum fire. The specimen was illustrated and described (although not named) in 1808 by James Parkinson (see below).
Screen Shot 2015-07-21 at 4.55.39 PMScreen Shot 2015-07-21 at 4.59.30 PMParkinson (1808, pl. 13) referred to this specimen as “an asterial fossil from America; probably of the nature of the encrinus.” Encrinus was a term used at the time for crinoids. Fay (1961) describes the convoluted way Parkinson’s specimen above became the type not only for the species, but also how P. godoni came to define the genus Pentremites as well. That Parkinson (1808) diagram, though, is the only image of the original specimen, and probably the first illustration of a blastoid.


Atwood, J.W. and Sumrall, C.D. 2012. Morphometric investigation of the Pentremites fauna from the Glen Dean Formation, Kentucky. Journal of Paleontology 86: 813-828.

DeFrance, J.M.L. 1819. Dictionnaire des Sciences Naturelles 14, EA-EQE, p. 467.

Fay, R.O. 1961. The type of Pentremites Say. Journal of Paleontology 35: 868-873.

Parkinson, J. 1808. Organic remains of a former world. London, Noraville & Fell, v. 2, p. 235-236, pl. 13.

Waters, J.A., Horowitz, A.S. and Macurda, D.B., Jr. 1985. Ontogeny and phylogeny of the Carboniferous blastoid Pentremites. Journal of Paleontology 59: 701-712.

Wooster’s Fossil of the Week: A very large Upper Jurassic ammonite from southern England

August 14th, 2015

1 Titanites fragment Bowers QuarryThe shard above doesn’t look like much. It comes from a specimen far too large for us to excavate, let alone pack onto a plane for the trip home.
2 TitanitesinrockHere’s a view of one of the full specimens still in bedrock.
3 KN&Titanites 2002And here we see a liberated specimen with Katherine Nicholson Marenco (’03) for scale 12 years ago. This is the ammonite Titanites anguiformis Wimbledon and Cope, 1978, from the Portland Freestone (anguiformis Zone, Portlandian, Upper Jurassic) exposed on the Isle of Portland in Dorset, southern England. Katherine and I, with help from Rich Poole (’03), Clive Griffiths, Tim Palmer and Paul Taylor, worked there in the summer of 2002 looking at encrusting faunas on shells for her Independent Study project. We could only take bits home, hence the fragment above. It was a wonderful field season in a spectacular place.

Titanites anguiformis is one of the largest ammonites, with specimens up to a meter in diameter. Our specimens above are all molds made of limestone; the aragonitic shells dissolved away. These lumbering beasts were swimming predators like all ammonoids, feasting on a variety of invertebrates in a shallow Jurassic sea.
4 CoombefieldBlocks2Our team spent most of its time in active building stone quarries like this one (Coombefield) looking at excavated blocks of Portland Freestone. This rock is one of the most comon building stones in England.
5 KNChiselling2The many surfaces of the blocks exposed fossils in a variety of orientations. Here is Katherine doing what she did for three weeks: chiseling bits of shell from the limestone.
6 Titanitesclose-up1Our goal was to collect surfaces like this. We have here an internal mold of Titanites anguiformis. The inner surface of the shell (a cryptic space) was encrusted by bryozoans, serpulid worms and oysters. When the aragonitic shell dissolved, the undersides of the encrusters were exposed like we see here. We then studied the attachment surfaces of the encrusters, looking at their growth patterns and successional overgrowths. Katherine’s work resulted in this GSA presentation.

[#Beginning of Shooting Data Section] Nikon CoolPix2500 2002/06/18 10:24:09 JPEG (8-bit) Normal Image Size:  1600 x 1200 Color ConverterLens: None Focal Length: 5.6mm Exposure Mode: Programmed Auto Metering Mode: Multi-Pattern 1/900.9 sec - f/4.5 Exposure Comp.: 0 EV Sensitivity: Auto White Balance: Auto AF Mode: AF-S Tone Comp: Auto Flash Sync Mode: Not Attached Electric Zoom Ratio: 1.00 Saturation comp: 0 Sharpening: Auto Noise Reduction: OFF [#End of Shooting Data Section]This fossil bit is thus a reminder of a great field season on the coast of southern England many years ago.


Falcon‐Lang, H. 2011. The Isle of Portland, Dorset, England. Geology Today 27: 34-38.

Wimbledon, W.A. and Cope, J.C.W. 1978. The ammonite faunas of the English Portland Beds and the zones of the Portlandian Stage. Journal of the Geological Society of London 135: 183-190.

Final day in the Silurian of New York

August 9th, 2015

1 Caleb new excavationLOCKPORT, NEW YORK (August 9, 2015) — This was the last day in the field for Andrej Ernst and me. We met all our goals (collecting bryozoans from the Rochester Shale, finding sclerobionts anywhere, and learning more about New York fossil localities) and had a great time. Now we have two days left to pack our specimens, ship those going to Germany, and review our notes. We will probably get some time tomorrow to see Niagara Falls!

We worked this morning in Caleb’s Quarry, a place we visited on our first day. Paul Chinnici, one of the fossil enthusiasts working this quarry, was our generous host. We were impressed with how much has changed in just the five days since our last time here. The large excavation above, for example, is new. This is fossil-collecting at a very large scale!

2 Caleb blocksAndrej searched for more bryozoans in the top layers of the shales while I studied these blocks of resistant calcareous siltstones and limestones. They are from a layer about midway down in the quarry. The shales erode to clay around them while they stand in relief.

3 Caleb block plan viewThe blocks have excellent trace fossils, including Chondrites seen in this bedding-plane view on the top of a block. Chondrites was made by small animals mining the sediments for deposited organic material.

4 Caleb block side viewThe trace fossils cut down into the siltstone, seen here in side view. The tunnels are filled with a clay-rich sediment that weathers a lighter color, giving us this contrast.

5 Caleb turbiditeMany of the blocks show a turbidite-like structure, with coarse shelly debris at the base and cross-bedded siltstone above. This may mean that the deep-waters that accumulated the clays to make the gray Rochester Shale were occasionally disturbed by massive turbidity flows of a sediment-water slurry. Were these triggered by storms or seismic events connected to orogenies to the east?

6 Caleb block stone in placeBecause of the recent excavations at Caleb’s Quarry, we were able to see this persistent calcareous siltstone in its stratigraphic context. It is here marked by the hammer. Note the gray shales above and below.

With this last observation, our fieldwork is officially done!

7 Paper pulp factory Lockport CaveDuring the afternoon we again visited the Erie Canal locks in Lockport. This time we took a tour of “Lockport Cave”, which is really a set of tunnels dug in the mid-19th century to channel river water through “races” to power factories. It is quite an ingenious use of hydropower before electricity. Above are the remains of the last of these water-powered factories, a paper pulp mill.

8 Lockport Cave entranceWe entered the main tunnel through a massive pipe that used to bring fast-flowing water to water wheels in the paper factory. The pipe is eight feet in diameter, and the water flowed at about 12 miles per hour.

9 Lockport Cave entrance pipeThis is the only one of my interior photos to succeed. The place was fascinating, even if it was cool, damp and dark. The trip included a short underground boat ride along a narrow water channel.

10 Upside-down railroad bridgeFinally, just because it is cool, here is the Lockport Railroad Bridge over the Erie Canal. It is called “the upside-down bridge” because the trusses are underneath the tracks. The legend is that the railroad company built the bridge this way to limit the height of boats on the canal, thus limiting its competition for cargo transport!

Return to the Silurian of New York

August 8th, 2015

1 Cichorium intybus SR 93 585LOCKPORT, NEW YORK (August 8, 2015) — Andrej and I began some deep collecting of Silurian localities in the Lockport area today in our survey of the bryozoan and sclerobiont faunas. The sites are, shall we say, not the most attractive, so let’s start with this common but gorgeous flower along the roadsides in western New York: Cichorium intybus (chicory). It is an invasive perennial from Europe that now has a global distribution. It has its uses as a coffee substitute, livestock feed, and salad stock. I love the color and serrated leaves.

2 Andrej Hickory CornersAnd here is why we lead with a flower. Andrej Ernst is sorting through samples from the Hickory Corners locality on State Route 93 in Lockport. The fossiliferous limestone here is the Hickory Corners Member of the Reynales Formation (Lower Silurian, Aeronian). The bryozoans are wonderfully diverse, and the top of the unit is a bored carbonate hardground. We happily collected here most of the morning, despite the trash and traffic.

3 Lewiston B beds Niagara RoadWe returned to a site along railroad tracks at Niagara Street in Lockport to collect from the Lewiston Member, part B, of the Rochester Shale. Again, the bryozoans here are fantastic, including my new favorite, a delicate cyclostome named Diploclema.

4 Lewiston E Burleigh Hill Shale LaFarge QuarryOur last site of the day was along the entrance road to a quarry. With all the surrounding rock, the only fossiliferous horizon is exposed in a shallow drainage cut in the road itself. Andrej is pulling a few bryozoans from the top of Lewiston Member, part E, of the Rochester Shale. The thick shales above him are the Burleigh Hill Formation.

5 Erie Canal at LockportWhen our work was done for the day, we became tourists and visited the Erie Canal locks in Lockport. (Hence the name!) This is a view looking east from the bottom of the two-lock sequence. We wanted to see the locks actually transport a boat, but it was a slow Saturday afternoon.

6 Erie Canal Lock LockportA view of the massive doors upstream of one of the modern locks. The engineering feats here date back to the early 1820s.

7 Crinoidal cross-sets Erie CanalGeology is evident here too. This is a block of crinoidal limestone showing cross-stratification. Many of the older buildings in Lockport are made of Silurian stone excavated to create the Erie Canal.

Wooster’s Fossil of the Week: Small and common orthid brachiopods from the Upper Ordovician of Ohio

August 7th, 2015

Cincinnetina meeki (Miller, 1875) slab 1 585
One of the many benefits of posting a “Fossil of the Week” is that I learn a lot while researching the highlighted specimens. I not only learn new things, I learn that some things I thought I knew must be, shall we say, updated. The above slab contains dozens of brachiopods (and a few crinoid ossicles and bryozoans). I have long called the common brachiopod here Onniella meeki. Now I learn from my colleagues Alycia Stigall and Steve Holland at their great Cincinnatian websites that since 2012 I should be referring to this species as Cincinnetina meeki (Miller, 1875). Jisuo Jin sorted out its taxonomy in a Palaeontology article three years ago:

Phylum: Brachiopoda
Class: Rhynchonellata
Order: Orthida
Family: Dalmanellidae
Genus: Cincinnetina
Species: Cincinnetina meeki (Miller, 1875)
Cincinnetina meeki (Miller, 1875) slab 2 585This slab, which resides in our Geology 200 teaching collection, was found at the famous Caesar Creek locality in southern Ohio. It is from the Waynesville/Bull Fork Formation and Richmondian (Late Ordovician) in age.
Cincinnetina meeki (Miller, 1875) slab 3 585You may see some bryozoans in this closer view. This bed is a typical storm deposit in the Cincinnatian Group. The shells were tossed about, most landing in current-stable conditions, and finer sediments were mostly washed away, leaving this skeletal lag.


Jin, J. 2012. Cincinnetina, a new Late Ordovician dalmanellid brachiopod from the Cincinnati type area, USA: implications for the evolution and palaeogeography of the epicontinental fauna of Laurentia. Palaeontology 55: 205–228.

« Prev - Next »