Wooster’s Fossil of the Week: Mysterious tentaculitids (Devonian of Maryland)

The sharp little conical fossils above are common Paleozoic fossils, especially in the Devonian. They are tentaculitids now most commonly placed in the Class Tentaculitoidea Ljashenko 1957. Tentaculitids appeared in the Ordovician and disappeared sometime around the end of the Carboniferous and beginning of the Permian. These specimens are from the Devonian of Maryland.

The systematic placement of the tentaculitids has been controversial. Their straight, narrow shells are usually ornamented by concentric rings, and many had septa (thin shelly partitions) inside the cones. The microstructure of the shells is most interesting — it looks very much like that of brachiopods and bryozoans. For this reason and several others, several of my colleagues and I believe the tentaculitids were lophophorates (animals that filter-feed with a tentacular device called a lophophore). They may thus be related to other problematic tubeworms like microconchids and cornulitids (Taylor et al., 2010).

Tentaculitids from the New Creek Limestone (Lochkovian, Early Devonian) of New Creek, West Virginia.

Knowing how the tentaculitids fit into an evolutionary scheme, though, has not helped us figure out what they did for a living. The figure below, from Cornell et al. (2003), shows these funny cones in just about every lifestyle imaginable!

References:

Cornell, S.R., Brett, C.E. and Sumrall, C.D. 2003. Paleoecology and taphonomy of an edrioasteroid-dominated hardground association from tentaculitid limestones in the Early Devonian of New York: A Paleozoic rocky peritidal community. Palaios 18: 212-224.

Taylor, P.D., Vinn, O. and Wilson, M.A. 2010. Evolution of biomineralization in ‘lophophorates’. Special Papers in Palaeontology 84: 317-333.

[Originally published May 29, 2011.]

Posted in Uncategorized | Tagged , , , | Leave a comment

Dr. Rob Thieler delivers the 36th annual Richard G. Osgood, Jr., Memorial Lecture at Wooster

One of the pleasures of being in the Geology Department at The College of Wooster is that we have the annual Richard G. Osgood, Jr., Memorial Lecture series. These presentations, given in honor of the late Professor Osgood, have significantly enriched our intellectual lives. Funds from the endowment are used to bring to Wooster internationally-recognized Earth scientists. Last night the 36th Osgood Lecture had an overflow crowd in Lean Lecture Room. It was an excellent event in every way.

Our speaker was Dr. Rob Thieler, Director of the U.S. Geological Survey Coastal and Marine Science Center. His title was “Changing Climate, Changing Coasts”.

Dr. Thieler outlined the causes and consequences of sea-level rise on coastal systems. It is a complex topic, but he made it accessible to everyone. The projected changes are grim enough, but he emphasized to students the critical need now and in the  future for people who can communicate science effectively to the public, and for decision-makers to have strong foundational awareness of geological context. Sounds like the ideal mission for a liberal arts geology program.

Dr. Rob Thieler on, appropriately, a coastline. We thank him for his clear, provocative and information-rich talk, and his wonderful interactions with our students. Thank you again to the Osgood family for endowing this spectacular lecture series.

Posted in Uncategorized | Tagged , , | Leave a comment

Professors Greg Wiles and Meagen Pollock earn a field experience grant from the Keck Geology Consortium

Wooster, Ohio — Two Wooster Geology Professors, Meagen Pollock and Greg Wiles, have a exciting new grant from the Keck Geology Consortium to fund a five-week research program for first-year and sophomore students interested in the Earth Sciences. The experience will involve summer field trips in Alaska and Utah. Great news! Congratulations to Greg and Meagen. New opportunities for future Wooster Geologists. See the full press release here.

Posted in Uncategorized | Tagged , | Leave a comment

Wooster’s Fossil of the Week: A scaphitid ammonite (Late Cretaceous of Mississippi)

The beauty above is Discoscaphites iris (Conrad, 1858) from the Owl Creek Formation of Ripley, Mississippi. Megan Innis and I collected it during our expedition to the Cretaceous-Paleogene boundary in the southern United States last summer. It is a significant index fossil in biostratigraphy: the Discoscaphites iris Zone is the latest in the Cretaceous (the late Maastrichtian Stage). This animal lived in the final days of the Mesozoic Era just before the mass extinction 65.5 million years ago.

Discoscaphites iris is an ammonite, a type of extinct cephalopod mollusk related to the modern octopus, squid and nautilus. It had a planispirally-coiled shell with chambers divided from each other by complexly-folded walls. If you look closely near the top of the fossil above, you will see where the shell has flaked away revealing an internal mold of sediment and a peek at the folded walls inside. “Ammonite”, by the way, is a very old term for these fossils. Pliny the Elder himself used a variant of the name, which comes from the Egyptian god Amun with his occasional coiled ram’s horn headgear.

Reconstruction of an ammonite by Arthur Weasley (via Wikipedia).

Ammonite shells were made of the carbonate mineral aragonite. This is the mineral that makes many modern mollusk shells have prismatic colors, which we call nacreous. You may know it best as “mother of pearl” or as pearls themselves. Aragonite has an unstable crystal structure and so is not common in rocks older than a few million years. The original aragonite in our ammonite fossil is thus a bonus.

In an oddly topical note, Discoscaphites iris was recently found in the Upper Cretaceous of Libya, giving it a disjunct range from the US Gulf and Atlantic coasts to the Mediterranean coast of northern Africa (Machalski et al., 2009).

Reference:

Machalski, M., Jagt, J.W.M., Landman, N.H. and Uberna, J., 2009. First record of the North American scaphitid ammonite Discoscaphites iris from the upper Maastrichtian of Libya. N. Jb. Geol. Paläont. Abh. 254: 373-378.

[Originally published April 24, 2011]

Posted in Uncategorized | Tagged , , , | Leave a comment

Wooster’s Fossil of the Week: A stromatoporoid (Middle Devonian of central Ohio)

Stromatoporoids are very common fossils in the Silurian and Devonian of Ohio and Indiana, especially in carbonate rocks like the Columbus Limestone (from which the above specimen was collected). Wooster geologists encountered them frequently on our Estonia expeditions in the last few years, and we worked with at least their functional equivalents in the Jurassic of Israel (Wilson et al., 2008).

For their abundance, though, stromatoporoids still are a bit mysterious. We know for sure that they were marine animals of some kind, and they formed reefs in clear, warm seas rich in calcium carbonate (DaSilva et al., 2011). Because of this tropical habit, early workers believed they were some kind of coral, but now most paleontologists believe they were sponges. Stromatoporoids appear in the Ordovician and are abundant into the Early Carboniferous. The group seems to disappear until the Mesozoic, when they again become common with the same form and life habits lasting until extinction in the Late Cretaceous (Stearn et al., 1999).

The typical stromatoporoid has a thick skeleton of calcite with horizontal laminae, vertical pillars, mounds on the upper surface called mamelons, and dendritic canals called astrorhizae shallowly inscribed on the mamelons. These astrorhizae are the key to deciphering what the stromatoproids. They are very similar to those on modern hard sponges called sclerosponges. Stromatoporoids appear to be a kind of sclerosponge with a few significant differences (like a calcitic instead of an aragonitic skeleton).

Stromatoporoid anatomy from Boardman et al. (1987).

Top surface of a stromatoporoid from the Columbus Limestone showing the mamelons.

There is considerable debate about whether the Paleozoic stromatoporoids are really ancestral to the Mesozoic versions. There may instead be some kind of evolutionary convergence between two groups of hard sponges. The arguments are usually at the microscopic level!

The stromatoporoids were originally named by Nicholson and Murie in 1878. This gives us a chance to introduce another 19th Century paleontologist whose name we often see on common fossil taxa: Henry Alleyne Nicholson (1844-1899). Nicholson was a biologist and geologist born in England and educated in Germany and Scotland. He was an accomplished writer, authoring several popular textbooks, and a spectacular artist of the natural world. Nicholson taught in many universities in Canada and Great Britain, finally ending his career as Regius Professor of Natural History at the University of Aberdeen.

Henry Alleyne Nicholson (1844-1899) from the University of Aberdeen museum website.

References:

Boardman, R.S., Cheetham, A.H. and Rowell, A.J. 1987. Fossil Invertebrates. Wiley Publishers. 728 pages.

DaSilva, A., Kershaw, S. and Boulvain, F. 2011. Stromatoporoid palaeoecology in the Frasnian (Upper Devonian) Belgian platform, and its applications in interpretation of carbonate platform environments. Palaeontology 54: 883–905.

Nicholson, H.A. and Murie, J. 1878. On the minute structure of Stromatopora and its allies. Linnean Society, Journal of Zoology 14: 187-246.

Stearn, C.W., Webby, B.D., Nestor, H. and Stock, C.W. 1999. Revised classification and terminology of Palaeozoic stromatoporoids. Acta Palaeontologica Polonica 44: 1-70.

Wilson, M.A., Feldman, H.R., Bowen, J.C. and Avni, Y. 2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 263: 24-29.

[Originally published on October 30, 2011]

Posted in Uncategorized | Tagged , , , , | 3 Comments

Coring the Bog – An 18,000 Year Record of Environmental Change

Two class projects kick off the Climate Change 2017 course. The first deals with tree-ring dating (dendrochronology, blog post coming soon) of historical structures and then analyzing the tree-rings for their climate significance. The second is is shown below and it concerned with analyzing sediment cores from Browns Lake Bog that document climate variability since the last Ice Age. Below are some photos of the bog coring – great thanks to Dr. Tom Lowell and his Glacial Geology class from the University of Cincinnati – the folks who did most of the work.

Setting up the coring rig at Browns Lake – early in the day snow covered the ground by 4 pm it was gone (albedo feedback in play).

The core boss (Dr. Tom Lowell) oversees the extraction of another meter of mud from the bog.

The probing team sends down 7 rods through the mud until refusal. Mapping the mud thickness gives an idea of the geometry of the bog and allows for the construction of an isopach map.

Extracting peat – the upper 5 meters or so are peat (significant amount of sphagnum moss and carbon). Note the trees, it is not a sphagnum bog now here.

Setting up the production line and assigning teams and tasks.

Coring a tree to determine the recruitment time – the hypothesis is that these trees moved into the bog recently (past 200 years) – the first trees here since the Ice Age. This nutrient limited bog was fertilized by wind blown dust during European Settlement allowing these vascular plants to obtain a foothold in the previously sphagnum moss dominated bog.

Hey there is a Wooster student – good job Ben. This white oak is growing on the top of  a kame and it has witnessed the changes in the climate and land use for the last 300 years.


Nick samples the bog water for its isotopic composition. This is work done in collaboration with isotope geologists at the University of Cincinnati.

Posted in Uncategorized | 5 Comments

Wooster’s Fossil of the Week: A receptaculitid (Middle Ordovician of Missouri)

This week’s fossil is a long-standing paleontological mystery. Above is a receptaculitid from the Kimmswick Limestone (Middle Ordovician) near Ozora, Missouri. I think I found it on a field trip with Frank Koucky in the distant mists of my student days at Wooster, but so many outcrops, so many fossils …

Below is a nineteenth century illustration of a typical receptaculitid fossil. They are sometimes called “sunflower corals” because they look a bit like the swirl of seeds in the center of a sunflower. They were certainly not corals, though, or probably any other kind of animal. Receptaculitids appeared in the Ordovician and went extinct in the Permian, so they were confined to the Paleozoic Era. Receptaculitids were bag-like in form with the outside made of mineralized pillars (meroms) with square or diamond-shaped heads. The fossils are usually flattened disks because they were compressed by burial. You may notice now that the fossil at the top of this post is a mold of the original with the dissolved pillars represented by open holes. (Paleontologists can argue if this is an external or internal mold.)So what were the receptaculitids? When I was a student we called them a kind of sponge, something like a successor of the Cambrian archaeocyathids. In the 1980s a convincing case was made that they were instead a kind of alga of the Dasycladales. Now the most popular answer is that they belong to that fascinating group “Problematica”, meaning we have no idea what they were! (Nitecki et al., 1999). It’s those odd meroms that are the problem — they appear in no other known group, fossil or recent.

I find it deeply comforting that we still have plenty of fossils in the Problematica. We will always have mysteries to puzzle over.
Another Wooster receptaculitid specimen, this time seen from the underside showing side-views of the meroms.
Diagram of a receptaculitid in roughly life position showing its inflated nature and pillar-like meroms. From Dawson (1880, fig. 25): a, Aperture (probably imaginary here). b, Inner wall. c, Outer wall. n, Nucleus, or primary chamber. v, Internal cavity.

Finally, this is what a typical receptaculitid looks like in the field (Ordovician of Estonia). Note that nice sunflower spiral of the merom ends.

References:

Dawson, J.W. 1880. The chain of life in geological time: A sketch of the origin and succession of animals and plants. The Religious Tract Society, 272 pages.

Nitecki, M.H., Mutvei, H. and Nitecki, D.V. 1999. Receptaculitids: A Phylogenetic Debate on a Problematic Fossil Taxon. Kluwer Academic/Plenum, 241 pages.

[Originally published on September 18, 2011]

Posted in Uncategorized | Tagged , , , | 6 Comments

Wooster’s Fossils of the Week: Peanut worms from the Silurian of Illinois

1-lecthaylus-gregarius-5-copyThis week’s fossils are a set of cool sipunculan worms from the Lockport Shale Member of the Racine Formation (Wenlockian, Silurian) of Blue Island, Illinois (which, it turns out, is not an island.). This is Lecthaylus gregarius Weller, 1925. (There is a common misspelling of the genus name as “Lecathylus”, which is how it is labeled in our collection.) They are masses of partially-carbonized bodies and external molds in a very fine-grained matrix. They are well known from this particular fossil-lagerstätte (a fossil fauna of remarkable preservation) in northern Illinois.

The Phylum Sipuncula did not often make it into the fossil record because of their entirely soft bodies, but a few are preserved way back in the Cambrian Chengjiang and Burgess Shale faunas. They show virtually no evolutionary changes in their long run to today, at least not in their outer form. They are commonly known as “peanut worms”.

2-lecthaylus-gregarius-2This is an example of the preservation modes: a black carbon film that has mostly flaked away, leaving behind a detailed external mold of the squashed peanut worms.

3-lecthaylus-gregarius-1Sipunculan bodies are divided into a main thick posterior trunk and a narrow, retractable anterior “introvert”. We’re looking here at the anterior introvert of Lecthaylus gregarius.

4-lecthaylus-gregarius-3-copyThis is the squat trunk of Lecthaylus gregarius.

5-themiste_petricola_evertedHere is the modern sipunculan Themiste petricola with introvert extended. It is the same basic plan as the Silurian Lecthaylus gregarius. Image from Wikipedia courtesy of Tomás Lombardo and Guillermo A. Blanco.

6-themiste_petricola_invertedThe modern sipunculan Themiste petricola with its introvert retracted. Image from Wikipedia courtesy of Tomás Lombardo and Guillermo A. Blanco.

stuart-weller-1870-1927Lecthaylus gregarius was described and named by Stuart Weller (1870-1927), an American paleontologist and geologist. He was born in the small town of Maine, New York. He earned a Bachelor’s degree in geology at Cornell University in 1894 followed by a PhD at Yale in 1901. Shortly after his Cornell degree, though, Weller traveled to the University of Chicago, where he worked his way through the ranks from a research associate to a full professor of Paleontology and Geology in 1915. He was also the director of the Walker Museum at the University of Chicago, and in 1926 he was president of the Paleontological Society. One of his sons, J. Marvin Weller (1899-1976) had a remarkably similar career as a stratigrapher and paleontologist.

References:

Kluessendorf, J. 1994. Predictability of Silurian Fossil‐Konservat‐Lagerstatten in North America. Lethaia 27: 337-344.

Roy, S.K. and Croneis, C. 1931. A Silurian worm and associated fauna. Field Museum of Natural History, Geological Series IV(7): 229-247.

Weller, S. 1925. A new type of Silurian worm. Journal of Geology 33: 540-544.

Posted in Uncategorized | Tagged , , , | Leave a comment

Wooster’s Fossil of the Week: Ammonite septa from the Upper Cretaceous of South Dakota

This week we have an ammonite from the Pierre Shale (Upper Cretaceous, Campanian-Maastrichtian) of southwestern South Dakota. It was collected on a wonderful field expedition in June 2008 with my friend Paul Taylor (The Natural History Museum, London) and my student John Sime. Ammonites are extremely common in this interval, but I like this one because it is broken in such a way to expose its complex internal walls, called septa. We are looking at a cross-section of a coiled ammonite showing an early whorl in the upper left surrounded by a later whorl. The septa are fluted at their margins as they meet the outer wall. The wiggly boundary line between a septum and the outer wall is called a suture.

Ammonite septa are remarkably complex, showing fractal patterns. Why did these animals, extinct for 66 million years, evolve such complexity in their septa? This is a hotly debated topic in paleontology. The most popular explanations include strengthening the walls of the shell to resist hydrostatic pressure at depth, buttressing the shell against the crushing pressures of biting predators, and increasing soft-tissue (mantle) surface areas for physiological advantages. Klug and Hoffman (2015) have an excellent summary of these ideas. Lemanis et al. (2016) have a fascinating mathematical study that suggests the answer in many cases complex sutures “seem to increase resistance to point loads, such as would be from predators.”

The astonishing English polymath Robert Hooke (1635-1703) took considerable interest in ammonites and their complicated septa. We have no contemporary images of him, but based on descriptions, Rita Greer painted the above portrait in 2004. Hooke’s life was as complex as the suture patterns he studied, so I leave you to other sources on him. Note in the portrait above, though, the ammonite!

These are drawings by Robert Hooke of ammonites and their suture patterns (from Kusukawa, 2013). It is a single image mirror-reversed. Beautiful.

References:

Derham W. 1726. Philosophical experiments and observations of the late eminent Dr. Robert Hooke, S.R.S. and Geom. Prof. Gresh., and other eminent virtuoso’s in his time. London: Derham.

Garcia-Ruiz, J.M., Checa, A. and Rivas, P. 1990. On the origin of ammonite sutures. Paleobiology 16: 349-354.

Klug, C. and Hoffmann, R. 2015. Ammonoid septa and sutures. In: Ammonoid Paleobiology: From anatomy to ecology (p. 45-90). Springer Netherlands.

Kusukawa, S. 2013. Drawings of fossils by Robert Hooke and Richard Waller. Notes Rec. R. Soc., 67: 123-138.

Lemanis, R., Zachow, S. and Hoffmann, R. 2016. Comparative cephalopod shell strength and the role of septum morphology on stress distribution. PeerJ 4:e2434

Posted in Uncategorized | Tagged , , , | Leave a comment

Wooster’s Fossils of the Week: Revisiting a pair of hyoliths from the Middle Ordovician of Estonia

We met these modest internal molds of the mysterious hyoliths about five years ago. With a dramatic new development in hyolith studies, they are worth seeing again.

These fossils are internal molds (the sediment that filled the shell) of of flattened cones composed of the carbonate mineral aragonite. The aragonite shells dissolved away after burial, leaving the cemented sediment behind. That’s what we see above, in their stark simplicity. (We also see wiggly indentations that are the trace fossil Arachnostega, which is what I collected them for in the first place.) They were found in the Middle Ordovician of Estonia.

Hyalites, though common throughout the Paleozoic, have been difficult to place in a taxonomic category. Because of their easily-dissolved aragonite skeletons, most fossils are like these — simple molds and casts. A few were found with some preserved internal organs, which added to the intrigue. Their flattened conical shells had a hinged lid (operculum) over the open end. Extending from each side in the space between the operculum and cone were two calcareous rods called helens (a name deliberately chosen so as not to evoke a particular function). They were rumored to be deposit-feeders, based on no real evidence, it turns out.

An excellent paper appeared earlier this month showing dramatic evidence of hyolith soft parts in the Cambrian of western Canada (Moysiuk et al., 2017). The authors reconstruct the iconic Cambrian hyolith Haplophrentis “as a semi-sessile, epibenthic suspension feeder that could use its helens to elevate its tubular body above the sea floor”. Their primary evidence is a magnificently preserved lophophore (tentacular filter-feeding apparatus) and a U-shaped digestive tract with a dorsolateral anus. These features not only give the hyoliths a life mode and feeding habit, they place them systematically among the lophophorates, a group that includes brachiopods, phoronids and bryozoans.

Haplophrentis in the Burgess Shale (Middle Cambrian) at the Walcott Quarry, Burgess Pass, British Columbia, Canada.

Reconstruction of Haplophrentis on the Cambrian sea floor. The tentacular lophophore is seen extending out underneath the operculum. Beautiful art by D. Dufault of the Royal Ontario Museum.

It’s not often we see such dramatic changes in the taxonomic placement and paleoecological habits of a large, extinct group. It is also not often that invertebrate fossils make headlines!

Reference:

Moysiuk, J., Smith, M.R. and Caron, J.B. 2017. Hyoliths are Palaeozoic lophophorates. Nature doi:10.1038/nature20804

Posted in Uncategorized | Tagged , , , | Leave a comment