Wooster’s Fossil of the Week: A crinoid-rich Lower Carboniferous siderite concretion (part III — those crinoids had company)

Crinoid with platyceratid (cross-section) 585The last installment of our analysis of a Lower Carboniferous fossiliferous siderite concretion given to the department by Sam Root. In part I we looked at the crinoid stems and calices on the outside and discuss the formation of siderite concretions and the preservation of this particular assemblage. In part II we had our first look at polished sections of the concretion, taking special note of the crinoid stem morphology and its replacement by the mineral marcasite. For part III you were promised a molluscan surprise.

In the top view you can see that we have a section that fortuitously cut right through the center of a crinoid head. The stem is visible at the bottom, with the calyx and attached arms above. Crowning the calyx is a thin semi-circle of shell nestled open-side-down across the crinoid oral surface. This we can tell from the shell morphology is a parasitic platyceratid gastropod caught in place on its crinoid host. Nice.
Platyceratid Lower Carboniferous 585 annotatedThree years ago we received a fossil donation from the Calhoun family of local Lower Carboniferous fossils, including this beauty pictured above. It is a crinoid calyx (you can tell by the polygonal plates) with a cap-shaped platyceratid gastropod (Palaeocapulus acutirostre) preserved in place on top of it between the arms (now missing). I drew a line across the image to indicate the likely plane of section through a similar pair in our siderite concretion. In section the platyceratid would be recorded as a thin shelly top on the calyx.

Platyceratids have long been known as Paleozoic associates of crinoids. For many years we thought of them as simply coprophagous, meaning they were consuming crinoid feces as they exited the anus. (Awkward conversation, I know.) Careful work by Tom Baumiller (1990) showed that this arrangement (which would not have directly harmed the crinoid because it was, after all, done with the food) was likely not the case. He found trace fossil evidence that the platyceratids were likely accessing crinoid stomach contents directly through some sort of proboscis, and that these parasitized crinoids were stunted in their growth and thus directly harmed (but not killed — no good parasite wants to lose its meal ticket). Our new specimen was thus likely a miserable little crinoid, even if it didn’t have a brain to sort out its feelings.
Stem Calyx 121413As one last view of our crinoids in the concretion, look at the detail in the crinoid stem just below the calyx. The lumen is visible in the center of the stem, as well as the alternating ornaments on the columnals.

This has been a fun specimen to examine. Thanks, Sam!

References:

Baumiller, T.K. 1990. Non-predatory drilling of Mississippian crinoids by platyceratid gastropods. Palaeontology 33: 743-748.

Donovan, S.K., and Webster, G.D. 2013. Platyceratid gastropod infestations of Neoplatycrinus Wanner (Crinoidea) from the Permian of West Timor: speculations on thecal modifications. Proceedings of the Geologists’ Association 124: 988–993.

About Mark Wilson

Mark Wilson is an emeritus Professor of Geology at The College of Wooster. He specializes in invertebrate paleontology, carbonate sedimentology, and stratigraphy. He also is an expert on pseudoscience, especially creationism.
This entry was posted in Uncategorized and tagged , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.