Our fossils this week come from our growing collection of material found in the Matmor Formation (Callovian-Oxfordian) of Makhtesh Gadol, southern Israel. In November I will be giving a talk at the annual meeting of the Geological Society of America in Charlotte, North Carolina, on the taphonomy of Matmor regular echinoids (“sea urchins”). The abstract is online. Taphonomy is the study of the fossilization process. In this case it is essentially what happened to the echinoid remains after death and before final burial. This part of the fossilization history can tell us much about the environment of deposition of the Matmor Formation. The image above is one of the rare complete tests (skeletons) in our study. It is probably a rhabdocidarid echinoid, but the preservation is not quite good enough to tell.
Echinoids are especially interesting for this kind of work. (That link will send you to a wonderful site explaining all you’ll want to know about echinoids and their evolutionary history.) They originated way back in the Ordovician Period, about 450 million years ago, and have retained the same general skeletal structure since then. Their response to physical and chemical conditions on the ocean floor has thus been consistent over time, and we can experiment with modern representatives to estimate their decay and disarticulation processes.
Typical test plate fragments from a rhabdocidarid echinoid in the Matmor Formation. The specimen on the right is encrusted by a very thin plicatulid bivalve, which is in turn encrusted by small branching stomatoporid bryozoans.
A flattened and thorny rhabdocidarid spine. The left end has a socket that attached to a tubercle (bump) on the test of the echinoid.
This cool spine was apparently bitten by a Jurassic fish! Wish I had at least one of that fish’s teeth.
The strange swollen sphere with little holes at the base of this echinoid is a cyst that likely formed from a copepod parasitic infection. Neat (and so far undescribed in the literature).
We can conclude that the Matmor Formation was deposited in very shallow, warm marine waters, probably lagoonal (a favorite living place for rhabdocidarid echinoids), that were only occasionally disturbed by storms and “burial events”. The echinoids decayed and disarticulated on the seafloor (a process that takes about a week) and the pieces tossed around for awhile gathering sclerobionts (encrusters, in this case) and experiencing significant abrasion. This matches other evidence from our previous paleontological studies of the Matmor’s depositional environment.
References:
Donovan, S.K., and Gordon, C.M., 1993, Echinoid taphonomy and the fossil record: Supporting evidence from the Plio-Pleistocene of the Caribbean. Palaios, v. 8, p. 304-306.
Greenstein, B.J., 1991, An integrated study of echinoid taphonomy: Predictions for the fossil record of four echinoid families: Palaios, v. 6, p. 519-540.
Greenstein, B.J., 1992, Taphonomic bias and the evolutionary history of the Family Cidaridae (Echinodermata: Echinoidea): Paleobiology, v. 18, p. 50-79.
Greenstein, B.J., 1993, Is the fossil record of the regular echinoid really so poor? A comparison of Recent and subfossil assemblages: Palaios, v. 8, p. 587-601.
Kidwell, S.M. and Baumiller, T., 1990, Experimental disintegration of regular echinoids: Roles of temperature, oxygen and decay thresholds: Paleobiology, v. 16, p. 247-271.
Pingback: Wooster Geologists » Blog Archive » Presenting a Jurassic echinoid story on the last day of GSA 2012
Pingback: Wooster Geologists » Blog Archive » Wooster’s Fossils of the Week: Episkeletozoans from the Middle Jurassic of Israel.
Dear colleague,
your cases on fossil echinids seem to be very interesting for a large specialistic community. So, I suggest a possible publication on a specialistic Journal, as the Journal of Paleopathology, that devoted some monographic issues to animal paleopathology.
I hope to receive your kind reaction.
Luigi Capasso