MITZPE RAMON, ISRAEL–It is a tradition with the Wooster Israel expeditions to spend one day with our colleague Yoav Avni geologically explore areas beyond those associated with our present research topics. This is the way we plant seeds for future research endeavors — and Senior Independent Study projects. Today we went to four sites, which I will present in brief vignettes.
Our first stop of the day was in Nachal Paran at N 30.32329°, E 34.96388° about 35 km southeast of Mitzpe Ramon. The image of above is from our outcrop looking up at the faulted boundary of a large graben in which the valley is formed. Preserved within this down-dropped structure is a thick section of the Lower Miocene Hazeva Formation.
Most of the Hazeva consists of reddish sandstones and conglomerates deposited by a very large river system that was flowing from the Arabian Peninsula into the Mediterranean. There have been a variety of African-derived mammal fossils in this unit, including elephants and giraffes. The unit of interest for us today is the gray rock at the base of the above image. It is a thin limestone unit no more than one meter thick. Its top has a scalloped pattern that may be due to ancient karstic weathering when the river deposited muds and gravels upon it. It appears to be a lake deposit formed just before the river moved into the region.
Team Israel 2013 is here looking at a cross-section of the lacustrine (lake-formed) limestone and the sediments beneath it. One of the issues is how do we know that the limestone was formed in a lake. The best clue is the occurrence of tiny high-spired gastropods throughout the matrix. Another would be the presence of trace fossils that may represent the horizontal trails of snails and/or freshwater arthropods like isopods or insects. There is a pervasive pattern of vertical tubes that remains mysterious. Are they trace fossils or some sort of diagenetic phenomenon? A further question is why this lake was there in the first place considering that it sits in a section almost entirely formed of typical terrestrial siliciclastic sediments. Does it represent a brief climate change? A tectonically-induced change in the local hydrogeology? Plenty of questions here for future geological researchers.