Meet Team Utah 2014

July 15th, 2014

EPHRAIM, UTAH — On July 9, four Wooster students traveled to Utah to begin structural and stratigraphic research with me.  They will be out here until July 22, when we will all fly back to Ohio together.  I’d like to introduce these students to you!!

Team Utah

Above is a great picture of Team Utah on the morning of their first day in the field.  From L to R, the students are:  Michael Williams (’16), Kelli Baxstrom (’16), Sarah McGrath (’17), and Chloe Wallace (’17).  Don’t they look enthused, happy, and eager?  (At this point, they do not actually realize that impact of desert heat:  temperatures will soon be 95-100 degrees by noon each day!!  Utah at the end of July can definitely be hot, making field work strenuous.)

During our time in Utah, we have 3 projects that require our attention.  Our primary objective will be to collect data for the deformation band work that I have been doing for a few years.  We will take a comprehensive look at some additional Cretaceous units that may contain deformation bands.  Also, we want to undertake two reconnaissance projects for future I.S. research.  One involves the Cretaceous to Paleogene North Horn Formation, and the other involves the Paleogene Colton Formation.  If there is time left, we will undertake more reconnaissance work in the Jurassic Arapien Formation, which is the core of an amazing diapir in the Sanpete Valley.  Because Mark Wilson has also been interested in the Jurassic of Utah for several years, I’m hoping that I can convince Mark to join forces with me one summer for a joint I.S. research project in Utah.  I really love the stratigraphy of central Utah, so I want to incorporate more I.S. research on the units out here (which have experienced the spectrum of Sevier orogenesis to Basin and Range extension.)

In the coming days, I’m going to ask each of the students to blog in order to reflect on their time in Utah thus far.  They have nearly been here for one week, so stay tuned for some additional news from Ephraim!!

After 5 weeks in the field…my first blog!!

July 15th, 2014

EPHRAIM, UTAH — My apologies for not blogging sooner, but things have been very, very busy out here in the Sanpete Valley.  I spent the first 4 weeks doing my usual summer teaching at Ohio State’s Geology Field Camp.  This summer, we have 22 students — one of whom is Tricia Hall (’14).  During her time at Wooster, Tricia spent 2 summers with me in Utah doing research that eventually culminated in her I.S. on deformation bands within the Sixmile Canyon Formation.  She decided to pursue graduate studies at Ohio State, and her new advisor (Terry Wilson) is the director of the field camp.  So, Tricia is currently completing field camp this summer before beginning her M.S. research in the fall.  It has been wonderful for me to continue to teach her about the joys of Utah geology!!

I’ve been teaching with a great cast of characters:  Terry (OSU), Cristina Millan (OSU), and Dan Kelley (BGSU).  We have had rotating faculty the past 5 weeks, and I have enjoyed every minute of teaching with them this summer.  I always cherish these summer nights in Ephraim, because although they are filled with work, they are also filled with a ton of laughter.  Days are long (6 am to 10+pm with students), so making sure that you are enjoying the teaching is paramount.

Below is a photo that I took from an overlook of Palisade State Park, with its golf course and swimming hole in view.  One of our field camp exercises involves a cross-section W-E across the Sanpete Valley.  This view to the SW encompasses much of the cross-section transect.  Although I cannot give away any field camp secrets for next year’s class, I will say that there is some amazing geology here, with spectacular faults, folds, and unconformities.

Palisade Overlook

One of the most exciting evenings at field camp this year began as a very typical night after dinner.  Students were all extremely busy, diligently trying to finish an assignment by 10 pm.  All of a sudden, there was a low “roar”, and the apartment building began to shake.  We were actually experiencing a nearby earthquake!!  How cool is that?  Needless to say, myself and Cristina (co-instructor) quickly exited our apartment — only to witness all of the other geologists racing out of their rooms in excitement.  You can read about all of the details of the Spring City 4.2 earthquake (which was only about 10 miles to the NE) at: http://earthquake.usgs.gov/earthquakes/pager/events/uu/60075207/index.html

I was exceptionally excited, because its epicenter was on the flanks of the Wasatch monocline, where I did much of my dissertation research.  Although we had several aftershocks, field campers only felt the one episode of shaking.  It was a great educational moment, because Ephraim lies in the transition zone between the Colorado Plateau and the Basin and Range Province.  This region exhibits some of the easternmost normal faulting associated with Basin and Range extension in Utah.

Please look for additional blogs in the very near future.  I currently am working with 4 Wooster students since finishing my teaching duties at field camp.

 

 

Wooster’s Fossils of the Week: “Star-rock” crinoids from the Middle Jurassic of Utah

May 18th, 2014

Isocrinus_nicoleti_Encrinite_Mt_Carmel_585This little slab of crinoid stem fragments comes from the Co-op Creek Member of the Carmel Formation (Middle Jurassic) exposed in northwestern Kane County, Utah. I collected it with my friend Carol Tang as we explored a beautiful encrinite (a rock dominated by crinoid skeletal debris) exposed near Mount Carmel Junction. In 2000, Carol and her colleagues published a description and analysis of this unit and its characteristic crinoid, Isocrinus nicoleti (Desor, 1845). This piece sits on a shelf in my office because it is so ethereal with its star-shaped columnals (stem sections). In fact, the local people in the area collect pieces of the encrinite and sell them as “star rocks“. As I recall, some folks were rather territorial about the outcrops!

Isocrinus nicoleti is one of only three crinoid species known in the Jurassic of North America. (The others are I. wyomingensis and Seirocrinus subangularis.) Tang et al. (2000) showed that this species migrated into southwestern North America by moving southward through a very narrow seaway for thousands of kilometers. I. nicoleti had long stems and relatively small crowns, so it left us zillions of the columnals and very few calices. These washed into large subtidal dunes creating the cross-bedded encrinite.
Isocrinus asteriaThe genus Isocrinus is still alive, most notably in the deep waters around Barbados in the Caribbean. Above is a diagram of Isocrinus asteria originally published by Jean-Étienne Guettard in 1761. The long stem is star-shaped in cross-section.
Pierre Jean Edouard DesorThis gentleman is Professor Pierre Jean Édouard Desor (1811-1882), who named Isocrinus nicoleti in 1845. He is shown here 20 years later. Desor was a German-Swiss geologist who studied two very disparate subjects: glaciers and Jurassic echinoderms. He trained as a lawyer in Germany, but got caught up in the democratic German unity movement of 1832-1833 and had to flee to Paris. In 1837 he met Louis Agassiz and began to collaborate with him on a variety of projects paleontological and glaciological. He even had a trip to the United States where he helped survey the coast of Lake Superior. He took a position as professor of geology at the academy of Neuchâtel, Switzerland, in 1852, eventually retiring in genteel affluence. (This is not how these geological biographies usually end!)

References:

Ausich, W.I. 1997. Regional encrinites: a vanished lithofacies. In: Brett, C.E. and Baird, G.C. (eds.): Paleontological Events, p. 509-519. Columbia University Press, New York.

Baumiller, T.K., Llewellyn, G., Messing, C.G. and Ausich, W.I. 1995. Taphonomy of isocrinid stalks: influence of decay and autotomy. Palaios 10: 87-95.

Desor, É. 1845 Résumé de ses études sur les crinoides fossilies de la Suisse. Bulletin de la Societe Neuchateloise des Sciences Naturelles 1: 211-222.

Hall, R.L. 1991. Seirocrinus subangularis (Miller, 1821), a Pliensbachian (Lower Jurassic) crinoid from the Fernie Formation, Alberta, Canada. Journal of Paleontology 65: 300-307.

Peterson, F. 1994. Sand dunes, sabkhas, streams, and shallow seas: Jurassic paleogeography in the southern part of the western interior basin. In: Caputo, M.V., Peterson, J.A. and Franczyk, K.J. (eds.): Mesozoic Systems of the Rocky Mountain Region, USA, p. 233-272. Rocky Mountain Section-SEPM, Denver, Colorado.

Tang, C.M., Bottjer, D.J. and Simms, M.J. 2000. Stalked crinoids from a Jurassic tidal deposit in western North America. Lethaia 33: 46-54.

Wooster’s Team Utah completes its presentations at the 2013 GSA meeting in Denver

October 29th, 2013

Tricia102913DENVER, COLORADO–Tricia Hall (’14) stands before her 2013 Geological Society of America poster: “Petrologic and kinematic analysis of deformation bands in the Late Cretaceous Sixmile Canyon Formation, central Utah“. She worked hard this summer with Dr. Shelley Judge pounding away at deformation bands to use them as keys to sorting through complex structural events. Kyle Burden (’14) is below with his collaborative poster: “Reconstruction of eruption conditions based on crater rim stratigraphy at Miter Crater, Ice Springs Volcanic Field, Black Rock Desert, Utah“. Michael Williams (’16), Candy Thornton (’14) and Cam Matesich (’14) are also co-authors on this presentation of summer work in the Black Rock Desert with Dr. Judge and Dr. Pollock, along with students and faculty from Albion College.

Kyle102913Team Utah closed out the 2013 Wooster student presentations at the Geological Society of America annual meeting in Denver. The faculty is very pleased … and not a little exhausted!

Team Utah’s first presentation at GSA 2013

October 28th, 2013

Michael102813DENVER, COLORADO–Michael Williams (who chose a particularly impressive shirt and tie today) and Dr. Shelley Judge presented a poster at the Geological Society of America meeting entitled: “Evidence for inflation and deflation in lavas flows west of Miter Crater, Ice Springs Volcanic Field, Black Rock Desert, Utah.” This was the first offering from this year’s Team Utah. Michael proved to be an effective and animated communicator — and possibly the only sophomore presenting at the meeting!

Home Sweet Home…(after 2 months of research and teaching in Utah!!)

August 9th, 2013

WOOSTER, OH — Two months in the field is great for my geologic soul, but I admit that there is an excitement on campus as I prepare for classes to begin in the next few weeks.  I last blogged about my time in Utah weeks ago, when Tricia Hall (’14) and I collected data in central Utah for her I.S. project on deformation bands.  It was difficult for me to blog while teaching field camp in June and July (32 students; 24/7 questions), but I wanted to catch everyone up on some of the sights from this summer.

During our last days in the field together, Tricia and I were both geologists and naturalists, witnessing “survival of the fittest” first-hand.  Check out these action shots:

Snake and Bat 1This snake has caught a bat, which was hiding in one of the fractures in the rock.  Oh…by the way…we just so happened to be taking measurements in this very area!!  As I was taking measurements, my head came within inches of the snake’s rear end.  But, lucky for me, he didn’t see me, as he had shoved his head inside one of the fractures to grab the bat.  Needless to say, when I saw our friend, I broke the world record for the 100 m dash (well, it was more like the steeplechase as I bounded across the rocks).

Snake and Bat 2Our friend ate several bats that afternoon; you can see here that he is busy swallowing one of the bats completely.  But, we still had to grab data, so I sent Tricia back in to get some of the measurements!!  As the diligent advisor, I decided to be “on the look-out” while she took the measurements (placing Tricia between the snake and me).

After my time with deformation bands, I spent time in Ice Springs Volcanic Field with ‘Team Utah 2.0′ (Meagen Pollock, 6 Wooster geology students,  and a group from Albion College led by Thom Wilch).  Meagen did a great job blogging our exploits of our field season, which was definitely enjoyable!!

Then, for the rest of the summer, I taught at Ohio State’s field camp based in Ephraim, Utah, and field camp this year had a record number of students.  While I cannot show you pictures of our mapping areas and tell you about all of the really outstanding geology there (after all, I don’t want to spoil the fun and give away all of the answers for next year’s students), I will say that central Utah has some amazing geology.  The field camp is located in the Sevier fold-thrust belt, and so wonderful foreland basin deposits are the basis of many of our mapping areas.  However, the area has been overprinted by more recent extension, making it a very complex transition between the Basin and Range and the Colorado Plateau.

I would like to share with you some of the really awesome field trips that we took the students on…

Waterpocket MonoclineEarly on, we traveled to Capitol Reef National Park, where the view of the Waterpocket Monocline is phenomenal.  The structure is one of the classic monoclinal folds formed during the Laramide Orogeny.  But, even though I absolutely LOVE monoclines, there was more to see at Capitol Reef…

Capital Reef - Jn Cross-beddingHere is a picture of the Navajo Sandstone and its amazing cross-bedding in all of its glory.  Can you just imagine yourself standing in this large desert environment during the Jurassic?  Picture yourself as a sand grain, saltating along a dune surface…

Capital Reef - GoosenecksBut, I cannot forget to show you a picture from the Goosenecks Overlook in Capitol Reef.  Seeing the stratigraphy in this portion of the part was very helpful to all of the students, as they began to mentally correlate units from southern Utah toward central Utah.

After days of mapping back in central Utah, we took another field trip to Great Basin National Park and the Northern Snake Range (eastern Nevada); this trip with the field camp students is always a highlight for me each summer.

Lehman CavesAt Great Basin National Park, you can take a guided tour of Lehman Caves.  Some of the views inside of the caves are incredible.  The delicate and fragile cave morphologies are spectacular and include stalactites, stalagmites, draperies, shields, and popcorn!!  The added plus to the Lehman Caves tour is that the temperature is always in the 50s, which is such a contrast to the desert heat that I am in all summer.

From Great Basin National Park, we traveled to the Northern Snake Range…

Northern Snake RangeThe Northern Snake Range, seen above, reveals a remarkable metamorphic core complex (MCC).   A MCC is a result of extreme crustal extension, and so you can see highly metamorphosed basement rocks that have been exhumed.

NSRD ScenicAbove is a scenic view of the Northern Snake Range detachment surface (NSRD; note the white rock unit in the picture).  The detachment surface is really a low-angle fault, which reveals metamorphosed rock in the footwall and normal faulted units in the hanging wall.

NSRD FoldingHere is a look at the highly folded metamorphosed rocks of the NSRD.  It literally takes the field camp class hours to walk a transect through all of the rock units leading up to the NSRD, but once they get there, the view is well worth the hike.  This year, we were able to have an amazing view of a forest fire in the Great Basin National Park (Lexington Arch Road wildfire, July 2013).

After a day looking at the NSRD, it was time to examine some other extensional characteristics of this region…

Hendrys CreekTake a look at all of these conjugate, normal faults near the mouth of Hendrys Creek!!  Aren’t they absolutely beautiful?  We were able to take the class up close and personal to these faults, getting accurate measurements for a computer-based exercise for later in the summer.  Students were able to take joint and fault measurements at this locality and foliations and lineations at several other localities within Hendrys Creek.  Then, using Stereonet, they could analyze and interpret the tectonic significance of the area!!  I get to visit Hendrys Creek each summer, and one of my former I.S. students (Joe Wilch ’13) worked in Hendrys as part of his I.S. project with the summer 2012 Keck Geology Consortium.

At the end of the summer, it was back to mapping in central Utah, and this — mapping and teaching mapping — makes me very happy.  I just love to be out in the field.  Each and every day, I get to look at the magnificent Wasatch Monocline with its fantastic Mesozoic-Cenozoic stratigraphy and antithetic normal faults (shown below in a view up Manti Canyon).

Monocline - MCP

IT IS GREAT TO BE A FIELD GEOLOGIST!!

 

 

Congratulations Team Utah!

June 20th, 2013

UTAH – Congratulations to Team Utah on completing a successful field season!

Team Utah 2013 at the end of their last day in the field. From left to right: (front) Dr. Thom Wilch (Albion), Michael Williams ('16, COW), Ellen Redner ('14, Albion), Cam Matesich ('14, COW), Adam Silverstein ('16, COW); (back) Kyle Burden ('14, COW), Dr. Meagen Pollock (COW), Ben Hinks ('14, Albion), Candy Thornton ('14, COW), Tricia Hall ('14, COW), and Dr. Shelley Judge (COW).

Team Utah 2013 at the end of their last day in the field. From left to right: (front) Dr. Thom Wilch (Albion), Michael Williams (’16, COW), Ellen Redner (’14, Albion), Cam Matesich (’14, COW), Adam Silverstein (’16, COW); (back) Kyle Burden (’14, COW), Dr. Meagen Pollock (COW), Ben Hinks (’14, Albion), Candy Thornton (’14, COW), Tricia Hall (’14, COW), and Dr. Shelley Judge (COW). Credit: T. Wilch

Although we’re parting ways, the students will be working on the research. They have plenty of data to analyze and lab work to do, so continue following the blog to stay updated on their progress.

Sandstone Appreciation Day

June 16th, 2013

Zion National Park, Utah – Team Utah took a break from the volcanic field to explore some of Utah’s (more famous) sedimentary rocks. We visited Zion, Utah’s first National Park.

Zion is a geological wonderland, featuring striking sheer cliffs and narrow slot canyons.

Zion is a geological wonderland, featuring striking sheer cliffs and narrow slot canyons.

The students took the Kayenta trail to the Emerald Pools.

The students hiked the Kayenta trail to the Emerald Pools. Credit: T. Hall

This is the Court of the Patriarch, so named for figures from the Old Testament by Frederick Vining Fisher in 1916. Abraham Peak is on the far left. Isaac Peak is in the center. Jacob Peak is the white peak that can be viewed just beyond Mount Moroni.

This is the Court of the Patriarchs, so named for figures from the Old Testament by Frederick Vining Fisher in 1916. Abraham Peak is on the far left. Isaac Peak is in the center. Jacob Peak is the white peak that can be viewed just beyond Mount Moroni on the right.

View of The Narrows, a trail that winds through the slot canyons carved by water through the Navajo Sandstone.

View of The Narrows, a trail that winds through slot canyons in the famously cross-bedded Navajo Sandstone.

The Wooster crew cools off in the Virgin River at the end of an awesome day in Zion. Credit: T. Wilch

The Wooster crew cools off in the Virgin River at the end of an awesome day in Zion. Credit: T. Wilch

Serious Geologizing in Utah

June 13th, 2013

UTAH – Team Utah has been seriously geologizing in the Ice Springs Volcanic Field over the past two days. Here’s a photo-journal of the crew at work.

Ben Hinks ('14, Albion) examines a stack of thin pahoehoe flows in his field area. Credit: M. Pollock

Ben Hinks (’14, Albion) examines a stack of thin pahoehoe flows in his field area. Credit: M. Pollock

Cam Matesich ('14, Wooster), Ben Hinks ('14, Albion, and Tricia Hall ('14, Wooster) looking for samples in an 'a'a lava flow in Cam's field area. Credit: T. Wilch

Cam Matesich (’14, Wooster), Ben, and Tricia Hall (’14, Wooster) look for samples in an ‘a’a lava flow in Cam’s field area. Credit: T. Wilch

Synchronized hammering was the only way we could get samples of the tough lava. From left to right: Cam Matesich, Ellen Redner ('14, Albion), Kyle Burden ('14, Wooster), and Ben Hinks. Credit: M. Pollock

Synchronized hammering was the only way we could get samples of the tough lava. From left to right: Cam, Ellen Redner (’14, Albion), Kyle Burden (’14, Wooster), and Ben. Credit: M. Pollock

Ellen hands Ben the fruits of her labor. Credit: T. Wilch

Ellen hands Ben the fruits of her labor. Kyle is ready to bag it. Credit: T. Wilch

Candy Thornton ('14, Wooster) directs the data collection at her field site. Credit: T. Wilch

Candy Thornton (’14, Wooster) directs the data collection at her field site. Credit: T. Wilch

Kyle, Ben, and Candy document the stratigraphy of an isolated lava pillar in the middle of a depression. Credit: T. Wilch

Kyle, Ben, and Candy document the stratigraphy of an isolated lava pillar in the middle of a depression. Credit: T. Wilch

Adam Silverstein ('16, Wooster) makes an excellent scale. Credit: M. Pollock

Adam Silverstein (’16, Wooster) makes an excellent scale. Credit: M. Pollock

 

Michael Williams ('16, Wooster) and Cam use the GPS to map the location of features in Candy's field site. Credit: A. Silverstein

Michael Williams (’16, Wooster) and Cam use the GPS to map the location of features in Candy’s field site. Credit: A. Silverstein

Tricia measures the orientation of volcanic striae. Credit: M. Pollock

Tricia measures the orientation of volcanic striae. Credit: M. Pollock

Team Utah Version 2.0

June 11th, 2013

UTAH – Field work has officially begun for Team Utah, Version 2.0. The team consists of three Wooster seniors (Kyle Burden ’14, Cam Matesich ’14, Candy Thornton, ’14) and two Wooster sophomores (Adam Silverstein ’16, Michael Williams ’16). Tricia Hall (’14) is a returning member who has graciously agreed to stay in Utah after her IS field work to help us with our data collection. This year, we’re also joined by Dr. Thom Wilch and two senior geologists (Ellen Redner ’14 and Ben Hinks ’14) from the Albion College Department of Geological Sciences. Needless to say, we’re a small army, and we’re ready to find the answers to questions raised during last year’s reconnaissance investigations of Ice Springs Volcanic Field in the Black Rock Desert.

Dr. Shelley Judge gives a brief overview of the local and regional geology before heading out to the field.

Dr. Shelley Judge gives a brief overview of the local and regional geology before heading out to the field.

We began the morning at the top of the cinder cone and found a new exposure that was uncovered in the last year.

We began the morning at the top of the cinder cone and found a new exposure that was uncovered in the last year.

I know what you’re thinking…it looks like a wall of pillow lavas. (By the way, Team Iceland’s work on pillow lavas continues.)

It's actually a wall of welded bombs and spatter.

It’s actually a wall of welded bombs and spatter. These blobs of lava were ejected explosively during an eruption and fused to one another on the rim of the cone.

Kyle Burden ('14), shown here taking careful notes, will be working on the welded bomb wall using an approach similar to the one Team Iceland used on pillow lavas. He'll be collecting high-resolution images with a GigaPan and making careful measurements of bombs across the exposure.

Kyle Burden (’14), shown here taking careful notes, will be working on the welded bomb wall using an approach similar to the one Team Iceland used on pillow lavas. He’ll be collecting high-resolution images with a GigaPan and making careful measurements of bombs across the exposure.

After a morning on the cinder cones, we descended into the lava fields.

Candy Thornton ('14) contemplates her field area. She'll be documenting features in the lava flows to determine whether they inflated as they were emplaced.

Candy Thornton (’14) contemplates her field area. She’ll be documenting features in the lava flows to determine whether they inflated as they were emplaced.

One of the features that Candy will be studying are these striae, which are grooves that formed on the sides of a mound called a tumulus. The striae indicate that the interior of the mound moved up relative to the outer crust while the lava was partially molten.

One of the features that Candy will be studying are these striae, which are grooves that formed on the sides of a mound called a tumulus. The striae indicate that the interior of the mound moved up relative to the outer crust while the lava was partially molten.

 

 

« Prev - Next »