A Strong Start to the 2017 Keck Gateway Project

June 22nd, 2017

Guest Blogger: Addison Thompson (’20 Pitzer College and Team Keck Member)

The 2017 Keck Gateway Team.

Amid our first official day at the College of Wooster, spirits were high as we embarked on the five week Keck Gateway Project.  The Gateway Project encompasses two different scientific enquiries which will span three states; Ohio, Utah, and Alaska.  The goal of the project centered in Utah is to determine the age of geologically young lava flows (now igneous rock) in the Ice Springs Volcanic Field of central Utah in order to add another piece to the unsolved puzzle of the Earth’s geologic history.  The goal of the project centered in Alaska aims to gain a better idea of why Cedar trees in Juneau are in decline.  The information gained from the students working in Alaska will help pinpoint specific environmental factors that are adversely affecting ecosystems, trees in particular.  This portion of the project is one week long.

Evidence of a tree core.

Once the data from the Utah and Alaska field sites are complied, both teams will return to the College of Wooster to complete lab tests in order to answer each respective hypothesis. This portion of the project is roughly three weeks long.  The participants of the project also have the opportunity to attend and present the findings of their research at the GSA’s (Geological Society of America) annual conference in Seattle in mid-October.

The first full day of the project was a beautiful one and we dove into the topic material with gusto.  We began at 9am in the geology department which is located in Scovel Hall and had a discussion about the rules of authorship and the details of what mentoring means with Dr. Pollock and Dr. Wiles.  Following that, details for the field work trips (Utah and Alaska) were coordinated and supplies like rock hammers and chisels were evenly distributed.  At that point it was time to break for a much needed lunch.  The Keck group met back at Scovel Hall around 1:30, just in time for a jaunt around the Oak grove led by Dr. Wiles, during which the group cored three trees to determine their age.

The processing of coring trees involves inserting a hollow drill into the tree, then removing the sample of the tree located in the hollow drill.

An excited Team Alaska member extracts her tree core.

The Alaska team will use this method hundreds of times in order to determine the health of trees in a large area.  With the first day complete, our group looks forward to strengthening our bonds and embarking on our geology research.

On the second day, the Utah group and the Alaska group split to their respective labs to discuss the minutia of the trips.

The Utah group examined basaltic rocks from the Black Rock Desert, the location where they will be conducting their fieldwork.

These rocks had previously been dated via two techniques: one being Varnish Microlamination (VML) which aims to date the rocks by measuring the coating on rock surfaces, the other being Cosmogenic Nuclide Dating which measures the accumulation of radioactive isotopes in the surfaces of the lava flows.

Meanwhile the Alaska group learned more about tree coring, a practice they will become very familiar with during their stay in the last frontier.

This concluded our work for the day, and we broke for lunch.  The rest of the day was spent preparing for our arduous journeys to the field sites the following morning.  We went shopping to stock up on various items for the trips.  The day came to a conclusion with a delicious dinner and some frisbee outside Douglas Hall.

Much to their chagrin, the Alaska group was departing the College of Wooster at 4am on the third day.  The Utah group was given a more lenient departure time, 6am, because their destination was 2,113 miles closer to the College.  There were no issues rising bright and early and both groups headed to Cleveland Hopkins Airport with anticipation of the journey ahead of them and slightly weary eyes.  To make matters more interesting for the Alaska group, their travel plans routed them through Dallas Fort Worth…not quite in their desired direction but they were sports nonetheless. And so the day went, a travel day.  The Utah group touched down in Salt Lake City in the mid afternoon and began the two hour drive to the town of Fillmore, only stopping once for a much needed dinner.  Eventually the group made it to their campground and settled in their cozy cabins.  After a long day of travel and two hours lost, a rest is what the doctor ordered.  As of writing this, the Alaska group is currently still in transit to Juneau.  Tomorrow marks the first official day of field work in the Black Rock Desert for the Utah group and there is an excited fervor hanging in the air.  All the tools and measurement devices are prepped and ready to go.

 

 

 

 

Team Columbia returns in high spirits with bountiful samples!

July 22nd, 2015

I.S. students, Kaitlin and Maddie enjoying the sunshine and representing Wooster below a fascinating ice tunnel.

I.S. students, Kaitlin and Maddie enjoying the sunshine and representing Wooster below a fascinating ice tunnel.

Guest Bloggers: Maddie Happ and Kaitlin Starr (Girdwood, Alaska)

Team Columbia is back from an exciting 8 days in the field.  Dr.Wiles, Nick Wiesenberg, Maddie Happ and Kaitlin Starr traveled via helicopter to Columbia Bay, Alaska beginning July 15th and returning July 21st. The first half of the trip was spent on the West Branch of Columbia Bay. Despite rainy days and blustery winds, we accomplished quite a bit of work! During our time on the West Branch, the team updated an old growth site, known as the Rock Tor, and collected samples from another living tree site near Kadin Lake. In addition to these living tree samples, the team collected cores and cross sections from newly exposed wood that were killed during the initial advance of Columbia Glacier.

    Kaitlin recording sample numbers and GPS locations at our first site.

Kaitlin recording sample numbers and GPS locations at our first site.

On July 18th, we were transferred across the bay to a location known as the Land Lobe. The team created base camp on the Great Nunatak side of the Land Lobe, as opposed to past years when groups were limited to the moraine due to the previous glacier terminus. Finally, the weather gods were on our side, and abundant sunshine allowed for productive days. We collected samples from the fans surrounding our base camp. On our last night in Columbia, we climbed to the tree line to update another living tree site titled the Son of the Great Nunatak. The alpine forest made for a wonderful last dinner in the Alaskan wilderness. On our final morning (with great weather still hanging on), Dr.Wiles and Nick recieved helicopter support to jump across the river to the other side of the Land lobe, where they collected newly exposed samples to complete a previously sampled site.

P1160402-copy-1024x769

Team Columbia enjoying sunshine and exploring sites at our second camp near the Great Nunatak.

Team Columbia encountered a few minor setbacks throughout the trip, including gritty oatmeal, killer porcupines, and constant stumbling (particularly near waterfalls); however, it was a fabulous adventure overall! I.S. students, Maddie and Kaitlin are excited to return to the Wooster Tree Ring Lab and begin exploring the great stories behind these logs.

    Photo of the East Branch of Columbia Glacier captured from the helicopter.

Photo of the East Branch of Columbia Glacier captured from the helicopter.

Shikotan Island Tree Ring Chronology

June 26th, 2015

Guest blogger: Xiangyu Li

As one of the most militarized islands, because of the dispute between Japan and Russia (the Kuril Islands dispute), Shikotan Island has remained a mystery to the world of tree rings and climate studies until now.

1447443_original Figure 1. Deserted Russian tank on Shikotan island (from http://www.altercorecrew.com/wp-content/uploads/2015/01/1447443_original.jpg).

Shikotan Island directly on the margin between the Pacific and Eurasian Plates. This special location indicates that this island is greatly influenced by geological factors, such as tsunami, earthquake, and large changes in climate (see photos below).


earthquake

Figure 2. Big crack after the Shikotan Island earthquake of 1994.

see ice

Figure 3. Shikotan Island surrounded by sea ice (Wikipedia).

In order to better define the climate history of the Island in 2014 Russian geologist E. Dolgova and M. Alexandrin collected core samples from larch, spruce and fir trees on Shikotan islands.

Capture

Figure 4. Location of  collection sites of all Shikotan cores. The island is approximately 30 km long (image from GooglEarth).

The purpose of this research is to find the climate information from these cores. These cores are properly sanded and marked. Forty six cores were collected from Shikotan Island and 20 were used to construct the chronology for this island.

core

Figure 5. Family picture of all cores in the chronology

As we can see, some cores are less than 100 years old and some cores can be dated back to 18th century. Despite the age difference these 20 cores correlate with each other well.The purpose of this research is to extract climate information from these cores. These cores are properly sanded and marked by year. Forty six cores were collected from Shikotan Island and 20 were used to construct the chronology for this island.

standardized tree ring indices

The tree ring width can be influenced by various factors other than climate signal, such as the growth trends and natural competition. The growth trends is the major factor that we want to eliminate. The above picture shows us the standardized tree ring measurements by removing the growth trends. The blue line is the sample size. This is the first tree-ring record from Shikotan Island.

Final copy

The standardized ring width chronology has a slight downward trend since 1900. I compared the standardized tree ring data with the meteorological data from Nemuro station (130 years long). It appears that September temperature has a strong negative correlation with the tree ring width. The correlation is 0.43, which is far above the 99% confidence level. The reason for such negative correlation is unknown, however, it may be related to changes in sea ice extent.

In addition to examining the correlation between ring width and temperature, I focused on the possible relationship between tree ring width and natural hazards, such as tsunami and earthquake.

After looking at the tsunami occurrence data from NOAA, I found that sometimes tsunami corresponded with a year of rapid growth. For example, in 1963, there are two tsunamis on Shikotan Island and some cores has a bigger growth this year compared to the year before. Photos below are two cores that show the correlation with the tsunami record and there are more cores have a correlation with the tsunami record. This relationship is under investigation.

K02E5B

Figure 6. Core K02E5B

K02E7B

Figure 7 K02E7B

Wooster’s Fossil of the Week: Petrified conifer wood

May 29th, 2015

1Petrified Wood 052615 585This is one of the most beautiful fossils in Wooster’s teaching collections. It is a polished section of petrified wood. It has vibrant colors and exquisite detail, as you’re about to see. Unfortunately any label that accompanied this specimen disappeared long ago. No matter how fantastic a fossil is, without its original location and stratigraphic context it has little scientific value. It works for our teaching collection, but I can’t tell you the age of the specimen, nor where it was found.
2Petrified wood close 052615 585Petrified wood is one of the most common types of fossil known to the public because of its abundance, attractiveness, hardiness (many a house out west has been built with petrified logs), and variety. Through the process of permineralization, minerals (quartz and chalcedony in this case) have infiltrated the porous organic structure, giving us three-dimensional, highly detailed preservation. This wood was first buried in low-oxygen sediments before it could decay on the forest floor. Groundwater circulated through the conductive tissue of the wood, depositing minerals in and around the cell walls of lignin and cellulose.

3Season of wood 052615 585It is hard to believe as we look closer and closer at the specimen that this is a fossil and not modern wood. Here we see the structure of the annual rings. The light-colored section is the new growth, the darker is when growth slowed at the end of the season. Our Wooster dendrochronologists, Greg Wiles and Nick Wiesenberg, could tell from this view that our tree was some kind of conifer.

4Polished petrified wood cells 585An even closer view of the same specimen. Now the perspective is dominated by vertical elements (rays) extending from the core of the tree outwards.

5Wood cells closest 052615 585This is as close as I could get with our photographic equipment. The cell walls and intervening rays are very distinct. Again, we’re looking at minerals here, not the original wood!

Again, fully label your fossils when you collect them. Because it has no locality information, this unlabeled specimen has little scientific worth. Too bad!

References:

Hickey, L.J. 2010. The Forest Primeval: The Geologic History of Wood and Petrified Forests. Yale Peabody Museum Series, 62 pp.

Dating Houses and Reconstructing Climate

September 22nd, 2014

porchThe Wooster Geology Climate Change class spent a beautiful fall day in Stony Creek, Ohio coring beams in three structures of historical significance. They will determine the cut dates (calendar dates when the timber for the houses were felled) for the homeowners and then examine the tree-ring data that results to help reconstruct drought for the region. The class will write a report for the homeowner as part of the project. The Wooster tree-ring lab has dated over 50 buildings. Many of the reports are archived here.

willy2

Willy coring a hand hewn beam with an increment borer in the basement of one of the structures.

dan

Dan cores into the white oak beam as Meredith keeps the utilities at bay.

 julia

Julia identifies the outer (bark year) rings of a large oak beam and sets the spoon to extract the core.

haloMeredith and Haley team up to extract another core from a structure.

mounting2Zach shows how the 5 mm core is mounted in a slotted core mount.

coreSarah glues the carefully oriented core into the mount.

mounting

Orienting the core properly is crucial for the next step of sanding the surface. This interdisciplinary group of historians, archaeologists, communication studies and geologists will learn bit about history of Ohio while learning some of the statistics of climate change and earning a Q (quantitative) course credit.

houseThe group should be able to determine when the timber was cut to build this restored structure. Sometime in early November the analyses should be completed.

extra_coringSome extracurricular coring of young white pines in the area.

From the Russian wilderness to the big city!

August 15th, 2014

Guest Blogger: Sarah Frederick (’15)

Arriving in Moscow was a sharp return to reality. Suddenly all of the things that had come to feel normal while we were in Kamchatka – the winding gravel roads and little towns with random meandering livestock that would peek in your windows – were replaced by traffic jams and the overwhelming immensity of the city!

Russia Blog Pics - 09One unique experience in Kamchatka was shopping. Shopping, like everything else in Russia is a very long, arduous process that takes hours longer than it should. Above is shown a typical store in Kamchatka. All of the goods are located behind the counter, so each item had to be individually requested from the shopkeeper. However, in all likelihood the first shop you visited would not have half of the items you required, so you would have to visit two or three additional establishments to find everything you needed. Even so, simple necessities like bread or beer were not always available. Also, take note of the high tech abacus being used!

The items we purchased were also completely foreign to me. While I was initially pretty skeptical, everything was quite tasty if you had an expert cook like Tatiana to prepare it!

Russia Blog Pics - 13Cow-in-a-can anyone? More commonly referred to as Tushonka.

Russia Blog Pics - 15There are a variety of culinary influences present. Lots of Uzbek cuisine, but we also encountered Georgian, Russian, and Ukrainian dishes. A common afternoon meal with borscht, beat soup of Ukranian origin, is pictured above.

While in Moscow we toured the Institute, a towering majestic building, one of seven built around the city, which houses several departments of Moscow State University, a museum, faculty and students.

Russia Blog Pics - 16An apartment in the wing to the right was actually our home for the duration of our visit.

 While in Moscow we of course visited the touristy section of the city.

DSCN2787The Kremlin

Russia Blog Pics - 17Dr. Wiles with our two hosts, Olga and Vladimir in front of St. Basils.

DSCN2794One of the prominent monuments on the Red Square is Lenin’s tomb. He has been on public display since shortly after his death in 1924.

Russia Blog Pics - 03One last picture from Kamchatka. Thanks for following us through our journey! We look forward to reporting on our findings from the lab soon!

The Wooster Geologists of Team Alaska present at the 2013 Geological Society of America Meeting

October 29th, 2013

AndyAbby102913DENVER, COLORADO–We last saw the dynamic tree-coring duo of Abby VanLeuven (’14) and Andy Nash (’14) in wet, muddy, glorious Alaska pursuing their Independent Study research with Dr. Greg Wiles. They cleaned up nicely and today presented two posters at the 2013 annual meeting of the GSA in Denver. Abby is the senior author on the poster above, entitled: “Case studies of divergence along the North Pacific Rim“. On the poster below Andy is the senior author, and it is titled: “Tree-ring dating the neoglacial ice advance of Wachusett Inlet, Glacier Bay National Park and Preserve, southeast Alaska, USA“.

AbbyAndy102913Well done, Team Alaska!

Checking in from the Far East

August 14th, 2013

We are currently finishing our first leg of field research on Sakhalin Island, Fareast Russia, and today we are traveling to Vladivostok to stage the next two weeks of sampling climate-sensitive trees. This is  collaborative Wooster project funded by NSF with Kevin Anchukaitis (Woods Hole Oceanographic Institute) and Rosanne D’Arrigo (Lamont-Doherty Earth Observatory). Our Russian collaborators include Olga Solomina (Russian Academy of Sciences), researchers Ekaterina Dolgova; Eugenio Grabenko Vladimir Matskovsky, Tatiana Maratovna Kouderina and our host on Sakhalin, Yury Gensiorovskiy. Future Wooster student projects will include work on the Kamchatka Peninsula, the Sikhote-Atlin Mountains and the Kurile Islands.

team_dinner

The team at our final dinner at the Far East Branch of Geological Institute in Yuhzno-Sakhalinsk.

victor

The group split into two teams to find old and climate sensitive trees on the Island. My group traveled with Victor (above) who ably drove us in the Gas66. Here Victor takes a break on the shore of the Sea of Ohotsk.

 

tatiana_coring

Tatiana (originally from Kazakstan) cores a an old larch in a sea of Pinus Pumulus. This site is on the northern most part of the island – the Smit Peninsula.

camo

Camp near Nogliki. Olga and I sampled the larch site near here ten years ago and the group updated this important site by re-coring the trees.

strong

This view is of the many pump jacks and oil wells near Oxa. There are many strong landscapes on the island attesting to an extreme history of logging, oil and gas, fire and political upheaval. In spite of this there are many pockets of old growth forests remaining in beautiful settings.

food

The large of local foods including a full range of sea food makes for excellent dinners after a long day.

 

 

Wooster Geologist in the Far East of Russia — and on Russian TV!

August 14th, 2013

Screen Shot 2013-08-14 at 9.53.27 AMDr. Greg Wiles, the Ross K. Shoolroy Chair of Natural Resources at Wooster, is currently on an adventurous dendrochronology research trip to the Far East of Russia, including Sakhalin Island. He will have much more to say about it on this blog when he gets the chance. In the meantime, his wife Theresa Ford sent us this link to a Russian news video about his team and their work. The connection is awkward — the video only works for me on my Safari browser — but it is worth the download time to see our Dr. Wiles explaining those wiggly lines and soda straws filled with wood.

There is also a summer 2004 story in Go Nomad touching on Greg’s previous expedition to Sakhalin Island. Theresa found this too, and it was new to me. Here’s a link to a Russian Academy of Sciences page about that earlier research. It has some nice photographs.

Lauren Vargo (’13) starts off the Wooster Geologists in the 2013 Senior Research Symposium at The College of Wooster

April 26th, 2013

LaurenVargo042613WOOSTER, OHIO–The College of Wooster has an annual celebration of Independent Study after all the theses are done and (most) of the oral examinations. It is much fun as our students present their research to the community, which often includes people from the town and quite a few family members. The amount and quality of student research is astounding.

The first Wooster Geologist of the day was Lauren Vargo (above) talking about her I.S. project: “Tree-ring evidence of north Pacific volcanically-forced cooling and forcing of the Pacific Decadal Oscillation (PDO)”. Hers was a special presentation because she received an Honorable Mention for the Independent Study Research Prize in Sustainability and the Environment. This new prize was established by The College of Wooster Libraries and Gale-Cengage, an e-research and educational publishing company, to encourage undergraduate research in sustainability. You will remember Lauren as one of our video stars, as well as for her fieldwork in Alaska, including this epic blogpost.

The other Wooster seniors are presenting posters this morning and afternoon. We will see them here soon.

Next »