A Wooster Geologist goes to a Bigfoot meeting

August 29th, 2015

1 Bigfoot head reconstruction 082915ORRVILLE, OHIO — The First-Year Seminar course I teach at Wooster is called “Nonsense! (And Why it’s So Popular)“. It is ostensibly about exploring irrational ideas in human society, such as astrology, conspiracy theories, pseudoscience, quack medicine, the “paranormal” and the like, but more fundamentally concerned with critical thinking and writing. It is about skepticism and learning how to test ideas and express the results. It is great fun because there is of course an endless carousel of nonsense to choose from every semester. We’re careful not to ridicule people, but we assess myths and misconceptions ruthlessly. Understanding why people believe weird things (from the title of one of our textbooks) turns out to be just as interesting as the ideas themselves, and it reveals the many filters and barriers between us and “reality” or “truth”. There are fuzzy boundaries around every topic, and our empathy for people who have poorly-supported world views grows throughout the course. Still, we can call some concepts nonsense even if the people professing them are sympathetic. The existence of Bigfoot is unsupported by physical evidence. The claim that Bigfoot has been thriving in Ohio for thousands of years is utter nonsense.

So why do people believe that an eight-foot tall hominid has been hiding all this time in the woods and swamps of crowded Ohio? To gain some insight, today my wife Gloria and I went to a Bigfoot presentation held at the Orrville Public Library by the founders of American Primate Exploration (APE from now on!). It was a fascinating two hours. You can see what the primary program was like by watching this video made from an earlier but nearly identical event.

2 Bigfoot presentation 082915The main presenter was Dan Baker, pictured above, the founder of APE. He first described the history and organization of his organization, emphasizing the number of “research teams” they have across North America and even into Australia. All the teams are staffed by what he termed “self-described experts on Bigfoot”, then noting that no one is a real expert on Bigfoot (thus leveling the field with scientists, I suppose). Mr. Baker moved immediately into anatomy, showing how Bigfoot has a flexible foot structure that includes a “midtarsal break”, unlike most humans. This means that Bigfoot footprints show a distinctive pressure ridge behind the ball of the foot, separating them from the typical human footprint. He had to admit, though, that one in 13,000 humans has such a mid-tarsal break. Turns out it is actually one in 13, so he was three orders of magnitude off. [Update: Check out the “midtarsal break” on these fake Bigfoot tracks.]

3 Bigfoot footprint casts 082915Above is a selection of the footprint casts displayed at the meeting. As you may can see, sorting out evidence for a midtarsal break from a regular human-like arch is dodgy business. Plus, some of those Bigfoot impressions are flat throughout, a feature attributed to “casting errors” by one of the presenters.

I was amazed to see that the famous 1967 Patterson-Gimlin film of a “Bigfoot” now named “Patty” was a central piece of “evidence” for the existence of Bigfoot. Mr. Baker breezily dismissed all accusations of fraud on the part of Patterson and Gimlin, which include a confession from the man filmed in the ape suit. This ancient clip, it turns out, is now holy script in the Bigfoot movement, so no skeptical analysis will make a dent in this belief system. Mr. Baker even brought a footprint cast that he proudly showed was signed by Bob Gimlin himself. A sacred relic.

4 Bigfoot handprint 082915I was introduced to evidence new to me: Bigfoot handprints. Here is one that was apparently made in 1995 by Paul Freeman in the Blue Mountains, Washington. Note the opposable thumb. Pretty impressive how that animal pushed his whole hand down into the mud. (The fingers are shortened here because, one of the APE crew said, “he didn’t clean out the holes first”.) Mr. Baker said that this cast all all the work of Paul Freeman was “legit”, despite claims that the man was a fraud. You can follow up on the Paul Freeman story here: “A few of Freeman’s “Bigfoot-related” discoveries were found to be faked, including manmade hair samples, and a few of his finds remain “unknowns.” (Although softened, this criticism is heresy in Bigfoot circles.) Freeman’s most famous film of a Bigfoot was shown approvingly at our event. Freeman had an unusual ability to find Bigfoot, proponents say. Unusual indeed.

After these items, Mr. Baker and the following speaker (Raymond V. Gardner II, APE Field Researcher) spent the remaining time describing their own encounters with Bigfoot in Ohio. Carroll County (about an hour and a half east of Wooster) is a hotspot, as is the area around Spencer in Medina County (just a half hour up the road). In fact, Ohio itself is second only to the Pacific Northwest in Bigfoot reports. The stories were what you would expect: fleeting glimpses before a camera could be deployed, howls and “wood-banging” in the night, “trampled grass” after a night of “activity”. One long segment was an audio recording of an APE team describing some squatting shape in the midnight woods. There was a brief mention of giving some vocal Bigfoot recordings to “a Native American” who could apparently translate them into some sort of pidgin English. (I’ve never heard that before.) I also learned that Bigfoot may be able to “see in the infrared” and thus avoid the ubiquitous trail cameras in the Ohio woods.

The questions from the audience were interesting. Most there were true believers from their tone, but some skeptics lurked. One of the best questions asked why we don’t see evidence of Bigfoot in the Pacific Northwest right now as unprecedented wildfires tear through the forests. Shouldn’t Bigfoot be flushed out into the open, or at least a few smoking bodies be found? No, was the answer. Bigfoot is very smart, very crafty, very quick, and very good at hiding. The lack of evidence is not evidence that they don’t exist. I also learned from an audience member that Bigfoot sometimes speaks in “backwards Indian” and “the Douglas Dialect“.

My conclusion is that we attended a service with true Bigfoot believers. The lack of evidence for the creature is quickly explained away to preserve the tenets of the faith. Bigfoot proponents have invested their identities in its existence, no matter how implausible. No amount of scientific skepticism can overcome a belief unencumbered by a need for physical evidence or even biological possibility. Bigfoot believers have a strong community reinforced daily with testimonies and acts of resistance against skeptics. As with any community, there are social roles to fill, from the leadership to “field researchers”. There is even an Ohio Bigfoot Hall of Fame for the ambitious. If your subject is defined by perpetual ambiguity, your arguments for it can be impervious to logical analysis. This was an excellent field experience for me to bring back to my First-Year Seminar class next week.

Thank you to the good and earnest officers of APE for the presentation (free to the public), and to the Orrville Public Library for hosting the event.

Here’s a cool book to explore the origins and details of Bigfoot mythology —

618c3NRVZML._SX329_BO1,204,203,200_

Wooster’s Fossil of the Week: Small and common orthid brachiopods from the Upper Ordovician of Ohio

August 7th, 2015

Cincinnetina meeki (Miller, 1875) slab 1 585
One of the many benefits of posting a “Fossil of the Week” is that I learn a lot while researching the highlighted specimens. I not only learn new things, I learn that some things I thought I knew must be, shall we say, updated. The above slab contains dozens of brachiopods (and a few crinoid ossicles and bryozoans). I have long called the common brachiopod here Onniella meeki. Now I learn from my colleagues Alycia Stigall and Steve Holland at their great Cincinnatian websites that since 2012 I should be referring to this species as Cincinnetina meeki (Miller, 1875). Jisuo Jin sorted out its taxonomy in a Palaeontology article three years ago:

Phylum: Brachiopoda
Class: Rhynchonellata
Order: Orthida
Family: Dalmanellidae
Genus: Cincinnetina
Species: Cincinnetina meeki (Miller, 1875)
Cincinnetina meeki (Miller, 1875) slab 2 585This slab, which resides in our Geology 200 teaching collection, was found at the famous Caesar Creek locality in southern Ohio. It is from the Waynesville/Bull Fork Formation and Richmondian (Late Ordovician) in age.
Cincinnetina meeki (Miller, 1875) slab 3 585You may see some bryozoans in this closer view. This bed is a typical storm deposit in the Cincinnatian Group. The shells were tossed about, most landing in current-stable conditions, and finer sediments were mostly washed away, leaving this skeletal lag.

Reference:

Jin, J. 2012. Cincinnetina, a new Late Ordovician dalmanellid brachiopod from the Cincinnati type area, USA: implications for the evolution and palaeogeography of the epicontinental fauna of Laurentia. Palaeontology 55: 205–228.

Wooster’s Fossil of the Week: A coiled nautiloid from the Middle Devonian of Ohio

July 17th, 2015

Goldringia cyclops Columbus Ls Devonian 585The above fossil is a nautiloid cut in cross-section, showing the large body chamber at the bottom and behind it to the left and above the phragmocone, or chambered portion of the conch (shell). It is a species of Goldringia Flower, 1945, found in the Columbus Limestone (Middle Devonian, Eifelian) exposed in the Owen Stone Quarry near Delaware, Ohio. It is a nice specimen for both what it shows us about a kind of nautiloid coiling and for clues to its preservation.

This specimen was originally labelled Gyroceras cyclops Hall, 1861. In 1945, Rousseau Flower designated this taxon the type species of Goldringia. I can’t tell if we really have G. cyclops here or some other species, so I’m leaving it at the genus level. The old name lingers, though, in the term for this kind of open coiling: gyroceraconic. It is one of the earliest examples of the nautiloids having the phragmocone positioned above the body chamber, presumably for stable buoyancy.
Pentamerid embedded 071315I like the clues to the early history of this conch after death. The chambers are entirely filled with sediment, a fossiliferous micrite. You can see places where the original shell was broken and larger bits infiltrated, like the whole brachiopod shown above. This brachiopod appears from its cross-section to be a pentamerid. Also visible are strophomenid brachiopods and gastropods.
Winifred GoldringRousseau Hayner Flower (1913–1988) described Goldringia in 1945. He doesn’t directly say who he named it after, but he thanks “Dr. Winifred Goldring of the New York State Museum” in the acknowledgments. We can tell Flower’s story later (and it’s a good one), but this gives us a chance to introduce Winifred Goldring (1888-1971). She was the first paleontologist to describe the famous Gilboa fossil flora (Devonian) in upstate New York, and she was the first woman State Paleontologist of New York (or anywhere, for that matter). (Now there is Lisa Amati in this prestigious position. Congratulations, Lisa!) Goldring grew up near Albany, New York, one of nine children in a very botanical family. She graduated from Wellesley College in 1909 with a bachelor’s degree in geology (very unusual for a woman at the time). She stayed at Wellesley to earn a master’s degree (1912). She also taught geology courses at Wellesley. In 1913 she studied geology at Columbia University with the famous Amadeus Grabau. In 1914, Goldring joined the scientific staff at the New York State Museum as a “scientific expert”. She worked her way up through the many ranks there to become State Paleontologist in 1939. She is best known as a paleontologist for her work with the fascinating Gilboa fossil forest, bringing her early upbringing by botanists to full circle. Along the way she was the first woman president of the Paleontological Society (in 1949) and vice-president of the Geological Society of America (in 1950). A hero of paleontology.

References:

Flower, R.H. 1945. Classification of Devonian nautiloids. American Midland Naturalist 33: 675–724.

Goldring, W. 1927. The oldest known petrified forest. Scientific Monthly 24: 514–529.

Koninck, L.G.D. 1880. Faune du Calcaire Carbonifere de la Belgique, deuxieme partie, Genres Gyroceras, Cyrtoceras, Gomphoceras, Orthoceras, Subclymenia et Goniatites. Annales du Musee Royal d‘Histoire Naturelle, Belgique 5: 1–333.

Wooster’s Fossils of the Week: A Silurian encrinite from southwestern Ohio

May 22nd, 2015

BrassfieldEncrinite585_041915The above rock was collected on our Sedimentology & Stratigraphy class field trip last month. It is an average piece of weathered Brassfield Formation (Early Silurian, Llandovery) from Oakes Quarry Park near Fairborn, Ohio (N 39.81472°, W 83.99471°). It is made almost entirely of crinoid fragments, and has a pleasant pinkish hue, most of which comes from the crinoid bits themselves. If you look closely you can see crinoid thecal plate fragments as well columnals and pluricolumnals.

This kind of limestone in which echinoderm ossicles make up the bulk of the grains is known as an encrinite. I first learned about encrinites from my colleague Bill Ausich of The Ohio State University, who has written the best assessments of encrinites on a regional scale. Encrinites are well-washed biosparite grainstones typically deposited between fair weather and storm wave bases on shallow shelves in low latitudes. They are surprisingly common from the Ordovician into the Jurassic, but then the disappear from the rock record as crinoids declined in abundance in shallow environments.

We’ve seen encrinites before in this blog from the Silurian of Estonia, the Triassic of Poland, and the Jurassic of Utah.

References:

Ausich, W.I. 1986. Early Silurian inadunate crinoids (Brassfield Formation, Ohio). Journal of Paleontology 60: 719-735.

Ausich, W.I. 1997. Regional encrinites: a vanished lithofacies. In: Paleontological events: stratigraphic, ecologic and evolutionary implications, p. 509-519. Columbia University Press, New York.

Ausich, W.I. and Deline, B. 2012. Macroevolutionary transition in crinoids following the Late Ordovician extinction event (Ordovician to Early Silurian). Palaeogeography, Palaeoclimatology, Palaeoecology 361: 38-48.

Hunter, A.W. and Zonneveld, J.P. 2008. Palaeoecology of Jurassic encrinites: reconstructing crinoid communities from the Western Interior Seaway of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 263: 58-70.

Tang, C.M., Bottjer, D.J. and Simms, M.J. 2000. Stalked crinoids from a Jurassic tidal deposit in western North America. Lethaia 33: 46-54.

Wooster’s Fossil of the Week: A ptilodictyine bryozoan from the Silurian of Ohio

May 15th, 2015

Phaenopora superba Brassfield 585The fossil above was found by Luke Kosowatz (’17) on our Sedimentology & Stratigraphy class field trip last month. We were measuring and sampling the Brassfield Formation (Early Silurian, Llandovery) near Fairborn, Ohio, and Luke pulled this beauty out of the rubble. This limestone is full of echinoderms and corals, so this lonely bryozoan was immediately a star.
Peela 050815This is the specimen that we sectioned and made an acetate peel from last month. The interior view, shown above, was critical to its identification. This peel was made perpendicular to the surface. It shows that the bryozoan is bifoliate, meaning it has two sides with zooids (the filter-feeding bryozoan polypides) and stood upright on the seafloor like a fan or leaf. Both sides had the characteristic bumps called monticules.
Phaenopora closerThe next critical view is this close-up of a slightly weathered surface of the bryozoan. It shows a regular arrangement of the larger zooecia (autozooecia) with two smaller zoooecia (metazooecia) between each pair. These clues enabled my friend Andrej Ernst, a paleontologist and bryozoan expert in the Department of Geosciences at the University of Hamburg, to identify this bryozoan as the ptilodictyine Phaenopora superba (Billings, 1866).
CNSPhoto-GEOLOGISTElkanah Billings (1820-1876) originally described this bryozoan species in 1866. He was Canada’s first government paleontologist, and he very much looked the part. Billings was born on a farm near Ottawa. He went to law school and became a lawyer in 1845, but he gave up dusty books for the life of a field paleontologist. In 1856 Billings joined the Geological Survey of Canada. He named over a thousand new species in his career. The Billings Medal is given annually by the Geological Association of Canada to the most outstanding of its paleontologists.

References:

Billings, E. 1866. Catalogues of the Silurian fossils of the island of Anticosti: with descriptions of some new genera and species. Dawson brothers.

Ross, J.P. 1960. Larger cryptostome Bryozoa of the Ordovician and Silurian, Anticosti Island, Canada: Part I. Journal of Paleontology 34: 1057-1076.

Ross, J.P. 1961. Larger cryptostome Bryozoa of the Ordovician and Silurian, Anticosti Island, Canada: Part II. Journal of Paleontology 35: 331-344.

A beautiful day for Wooster Geologists in the Silurian of Ohio

April 18th, 2015

aDSC_5072FAIRBORN, OHIO–It’s field trip season at last for the Wooster Geologists. Several geology classes have now been out in Ohio, taking advantage of windows of spectacular weather. Today was one of those days for 25 students in the Sedimentology & Stratigraphy class. We returned to the Oakes Quarry Park exposures in southwestern Ohio (N 39.81472°, W 83.99471°). Three years ago here in April it was 37°F and raining. This year the conditions were perfect. We studied outcrops of the Brassfield Formation (Early Silurian, Llandovery) in the old quarry walls. The students measured stratigraphic columns of these fossiliferous biosparites as part of an exercise, and then explored the glacially-truncated top of the unit.

bDSC_5079The Brassfield is intensely fossiliferous. Large portions of it are virtually made of crinoid fragments. In the random view above you can see columnals, as well as a few calyx plates. This is why this unit is very popular among my echinodermologist friends at Ohio State.

DSC_5056Kevin Komara, Brian Merritt and Dan Misinay (Team Football) are here contemplating the quarry wall, planning how to measure their sections.

DSC_5063One of our Teaching Assistants, Sarah Bender, is here pointing out one of the many thin intercalated clay units in the Brassfield biosparites.

DSC_5065Fellow Californian Michael Williams directed the action. No, actually he’s doing the time-honored technique of following a measured unit with his finger as he finds a place he can safely climb to it and the units above. He is holding one of our measuring tools, a Jacob’s Staff. Why do we call them “Jacob’s Staffs”? Read Genesis 30:25-43. (Yes, today’s students are mystified by Biblical references.)

DSC_5066Here’s Rachel Wetzel, giving me a heart attack. Don’t worry, insurance companies and parents, she’s fine.

DSC_5068Rachel is again on the left. Team Ultimate Frisbee (Meredith Mann and Mae Kemsley) are in the front, and Sharron Ostermann is above. This is the recommended way to get to the top of the exposure!

DSC_5070We carried our lunches in “to go” boxes from the dining hall. Our Teaching Assistants Sarah Bender and Kaitlin Starr enjoyed a sunny picnic on the rocks.

yDSC_5077The top level of the quarry was cleared of soil and brush many years ago to expose a glacially truncated and polished surface of the Brassfield. Looking for glacial grooves and fossils here are (from the left) Tom Dickinson, Jeff Gunderson (another Californian!), Andrew Conaway, and Luke Kosowatz (who seems to also be making a little pile of rocks as a memorial to a great day).

zDSC_5074One of the many corals we found in the top of the Brassfield was this halysitid (“chain coral”), an indicator fossil for the Late Ordovician and Silurian.

Everyone returned safely to Wooster with their completed stratigraphic columns, lithological descriptions, and a few fossils. Thank you to Mark Livengood, our bus driver. Good luck to the other field trip groups later this month!

Wooster’s Fossil of the Week: A molded brachiopod from the Lower Carboniferous of Ohio

February 20th, 2015

Syringothyris bored Wooster CarboniferousWe haven’t had a local fossil featured on this blog for awhile. Above is an external mold of the spiriferid brachiopod Syringothyris typa Winchell, 1863, from the Logan Formation (Lower Carboniferous, Osagean, about 345 million years old) of southeastern Wooster, Ohio. The outcrop is along the onramp from north Route 83 to east Route 30. Older Wooster geologists may remember this area was called “Little Arizona” because of the large roadcuts made for a highway bypass that was never completed. That original outcrop was destroyed several years ago, but the same rocks are exposed in this new section. This is the area where Heather Hunt (’09) did her Senior Independent Study work, and long before her Brad Leach (’83) worked with the same fossils.

The Logan Formation is primarily fine sandstone, with some subordinate conglomerates, silts and shales. It was likely deposited in the proximal portion of a prodelta at or below wavebase. The fossils in the Logan are mostly these large Syringothyris and the bivalve Aviculopecten, along with scattered crinoids, gastropods, bryozoans, nautiloids and ammonoids. This fauna needs more attention. Funny how the fossils in your own backyard are so often ignored.

This brachiopod was first buried in sediment and then the shell dissolved away, leaving an impression behind. Since it is an impression of the exterior of the shell, it is called an external mold. Curiously, all the external molds (and the internal molds as well) in the local Logan Formation have an iron-rich, burnt orange coating much finer than the fine sand matrix. This means that details are preserved that are of higher resolution than the matrix alone would allow. In the case of this fossil, that coating extended down into long, narrow borings in the shell, casting them (see below).
Syringothyris borings 585These borings are odd. Most of them are parallel to the ribs (plicae) of the brachiopod, and appear to have been excavated from the shell periphery towards its apex. This was in the opposite direction of brachiopod shell growth. I suspect they were made by boring annelid worms that started at the growing edge of the shell where the mantle ended. These traces need attention, like most other aspects of this local fossil fauna.

References:

Ausich, W.I., Kammer, T.W. and Lane, N.G. 1979. Fossil communities of the Borden (Mississippian) delta in Indiana and northern Kentucky. Journal of Paleontology 53: 1182-1196.

Bork, K.B. and Malcuit, R.J. 1979. Paleoenvironments of the Cuyahoga and Logan formations (Mississippian) of central Ohio. Geological Society of America Bulletin 90 (12 Part II): 1782-1838.

Leach, B.R. and Wilson, M.A. 1983. Statistical analysis of paleocommunities from the Logan Formation (Lower Mississippian) in Wayne County, Ohio. The Ohio Journal of Science 83: 26.

Wooster’s Fossils of the Week: Beautiful trace fossils from the Upper Ordovician of southern Ohio

December 19th, 2014

Trace fossils Bull Fork Ordovician OH 585Every year we highlight at least one of the fossils found and studied by Wooster’s Invertebrate Paleontology class as part of their field and laboratory exercises. This year it is this nice slab of trace fossils collected by Curtis Davies (’15) on our August 31 field trip to the emergency spillway in Caesar Creek State Park. I didn’t even notice it at the time Curtis picked it up. I only saw its full glory when he photographed the rock as part of a paleontological essay.
CurtisGalen083114aCurtis Davies is the smiling, bearded guy in the back (with Galen Schwartzberg) at the Caesar Creek outcrop. The rain had finally stopped and everyone was happy.

The traces are exposed here on the bottom of a bed of argillaceous limestone. They are preserved in what trace fossil workers (ichnologists) call convex hyporelief, which means simply that they stick out on the base (or sole) of the rock slab. These were tunnels originally excavated in soft mud by worm-like animals. The tunnels were filled with sediment that cemented up more resistant than the surrounding matrix, and thus were weathered in this relief.
Taenidium serpentinum Heer, 1877Most of the trace fossils here are the simple unlined burrow called Planolites, one of the most common traces in the Ordovician of the Cincinnati area. The trace labelled with the red “T” above, though, is rare here. Note that it is formed by a series of pulse-like movements that produced segments in the sediment infill. My estimate is that this trace can be classified as Taenidium serpentinum Heer, 1877. It is not common in the Ordovician.
Heer, Oswald, 1809-1883Oswald Heer (1809-1883), the scientist who named Taenidium serpentinum, was a Swiss geologist and botanist. As was the case for many educated Europeans, he started as a clergyman, even signing up for holy orders. The natural world captivated him, though, and starting with insects he worked his way up to become a naturalist and professor of botany at the University of Zürich. He was one of the key figures in the establishment of paleobotany (the study of fossil plants).
Taenidium serpentinum Heer, 1877 image 585Here is Heer’s figure of Taenidium serpentinum from Plate XLV in his 1877 book, Flora fossilis Helvetiae (Fossils Plants of Switzerland). You see the irony already. Heer described this trace fossil as a plant, inadvertently becoming one of the early figures in ichnology, the study of trace fossils.

Oswald Heer published many books and papers, becoming well known for his geological and paleontological explorations and descriptions. He was awarded the prestigious Wollaston Medal from the Geological Society of London in 1874. He was an earlier advocate of using fossils to sort on problems of paleogeography. He knew, for example, that Miocene fossils in Europe and North America were very similar, so he suggested in those days before Plate Tectonic Theory that the two continents were connected by a “land bridge“. This was called the “Atlantis Hypothesis”, and you can imagine the confusion that name caused among various cranks and pseudoscientists looking for Plato’s mythical continent. Heer died in Switzerland in 1883.

References:

D’Alessandro, A. and Bromley, R.G. 1987. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology 30: 743-763.

Heer, O. 1877. Flora fossilis Helvetiae: Die vorweltliche flora der Schweiz. Zürich, J. Wurster & Company. 182 p.

Keighley, D.G. and Pickerill, R.K. 1994. The ichnogenus Beaconites and its distinction from Ancorichnus and Taenidium. Palaeontology 37: 305-338.

Keighley, D.G. and Pickerill, R.K. 1995. Commentary: The ichnotaxa Palaeophycus and Planolites: Historical perspectives and recommendations. Ichnos 3: 301-309.

Last Fieldtrip for Climate Change

November 13th, 2014

GROUP

As the weather cools – the Wooster Geology Climate Change class ventured out in the field one more time. For the remainder of the semester we will try to get some work done. Two sites were visited – the Cedar Creek Mastodon Site and the OARDC.

excavationTwo weeks ago a pit was dug from our coring sites to the Mastodon excavation site. The mission was to link the cores to the archaeological site.

pit

The general stratigraphy of the mastodon site. The muds have a high calcium carbonate content that helped preserve the bones and tusk. Note the plow horizon about 25 cm down – the trip also focused on the agricultural history of Ohio and the role it plays in climate change.

anomalyJeff Dilyard, who hosted us at the site, explains to the class that a GPR (ground penetrating radar) survey identified an anomaly at this location. Isabel probed the area (see below) and “clunked” on a tile.

probingIsabel above used a tile probe to investigate the subsurface (note the chin method she is employing).

tileWhat is a “tile”? above is an old drainage tile from the site. This one is plugged with mud and the plugging was the reason the mastodon was discovered. New tiles were installed last year and the digging brought up the original tooth of the mastodon. Tile and draining of the Midwest allowed for our great agricultural history. In addition, the tile and draining allowed widespread plowing that released the carbon in naturally sequestered organic rich wetland soils to the atmosphere.

in_pitThe crucial end of the backhoe pit where probing and sampling links the bog cores to the mastodon site.

group_no_till

A quick stop ate the Triplett-Van Doren Experimental Plot. For over 50 years a variety of experiments have been underway here. We discussed the side-by-side no-till and mold board plowed sites and their ability to sequester carbon. Not plowing (no-till) sequesters carbon and mitigates erosion. Less carbon dioxide to the atmosphere and less sediment flux on the landscape.

no_till

A darker colored soil in the core barrel above shows more carbon in the soil relative to the one below.

DR

A quick stop at Secrest Arboretum to view the famous Dawn Redwoods. Under the proper conditions these trees can grow a meter each year. Our tree-ring data from this stand helps define the optimum conditions for their growth. Planting trees sequesters carbon and helps out in lots of other ways as well.

weather

In addition to the no-till fields and trees at Secrest – there is a meteorological record that spans more than 120 years (note how Tom – far left, seems to be the only student listening to the instructor). These instruments have been keeping track of climate and we will use it to compare with our tree ring study. Our tree ring project asks the question: during the time of European Settlement in Ohio what were the climate conditions like? (precipitation and temperature) and could the widespread deforestation and tile and draining of the region have perturbed the climate (see this video for more on this subject). This question is relevant to the ever-present striving of climate scientists to investigate the relative roles of natural climate variability and anthropogenic change.

 

 

 

 

Wooster’s Fossils of the Week: Upper Carboniferous seed casts from northeastern Ohio

October 31st, 2014

Trigonocarpus trilocularis Hildreth 1838We haven’t had a paleobotanical fossil of the week for awhile, so here are a couple of nice seed casts from the Upper Carboniferous Massillon Sandstone exposed near Youngstown, Ohio. They fall within the “form genus” Trigonocarpus Brongniart 1828. A form taxon is one that may not have any systematic or evolutionary validity, but it is a convenient resting place for taxa that share a particular morphological pattern but can’t be easily classified elsewhere. Trigonocarpus consists of seed casts that are “radially symmetrical, decorticated, and have their surface marked by three prominent ridges” (Gastaldo and Matten, 1978, p. 884). These particular seeds appear to be Trigonocarpus trilocularis (Hildreth, 1837). The taxa here are problematic, of course, because these seeds belong to larger plants that have their own names.
Trigonocarpus trilocularis Hildreth 1838_585These seeds appear to be from medullosalean trees, which were small relatives of today’s cycads. They were common in wetlands throughout North America and Europe during the Carboniferous, especially the Late Carboniferous. The seeds we have were likely attached to small stalks. You can see what appears to be a circular attachment scar above.
Samuel Prescott Hildreth (1783–1863)
Dr. Samuel Prescott Hildreth (1783-1863) was a physician and historian with a keen eye for natural history, especially including fossils and rocks. He was born in Massachusetts of strong Patriot stock and moved to the dangerous territory of Ohio in 1806, settling in Marietta in 1808. Dr. Hildreth is often cited as one of the first scientists in the country west of the Alleghany Mountains. His prolific writing is fast-moving, diverse and interesting, so he must have been a great traveling companion. Dr. Hildreth served in the Ohio Legislature and was on the first Ohio Geological Survey.
HildrethNutThe above is a figure from Hildreth (1837, p. 29) showing the fossil seed he named Carpolithus trilocularis. He wrote that “[t]his nut is probably the fruit of some antediluvian palm”, which is not far from what we think now (apart from the Flood reference!).

References:

Gastaldo, R.A. and Matten, L.C. 1978. Trigonocarpus leeanus, a new species from the Middle Pennsylvanian of southern Illinois. American Journal of Botany 65: 882-890.

Hildreth, S.P. 1837. Miscellaneous observations made during a tour in May, 1835, to the Falls of the Cuyahoga, near Lake Erie: extracted from the diary of a naturalist. American Journal of Science and Arts 31:1-84

Zodrow, E.L. 2004. Note on different kinds of attachments in trigonocarpalean (Medullosales) ovules from the Pennsylvanian Sydney Coalfield, Canada. Atlantic Geology 40: 197-206.

« Prev - Next »