Last Fieldtrip for Climate Change

November 13th, 2014

GROUP

As the weather cools – the Wooster Geology Climate Change class ventured out in the field one more time. For the remainder of the semester we will try to get some work done. Two sites were visited – the Cedar Creek Mastodon Site and the OARDC.

excavationTwo weeks ago a pit was dug from our coring sites to the Mastodon excavation site. The mission was to link the cores to the archaeological site.

pit

The general stratigraphy of the mastodon site. The muds have a high calcium carbonate content that helped preserve the bones and tusk. Note the plow horizon about 25 cm down – the trip also focused on the agricultural history of Ohio and the role it plays in climate change.

anomalyJeff Dilyard, who hosted us at the site, explains to the class that a GPR (ground penetrating radar) survey identified an anomaly at this location. Isabel probed the area (see below) and “clunked” on a tile.

probingIsabel above used a tile probe to investigate the subsurface (note the chin method she is employing).

tileWhat is a “tile”? above is an old drainage tile from the site. This one is plugged with mud and the plugging was the reason the mastodon was discovered. New tiles were installed last year and the digging brought up the original tooth of the mastodon. Tile and draining of the Midwest allowed for our great agricultural history. In addition, the tile and draining allowed widespread plowing that released the carbon in naturally sequestered organic rich wetland soils to the atmosphere.

in_pitThe crucial end of the backhoe pit where probing and sampling links the bog cores to the mastodon site.

group_no_till

A quick stop ate the Triplett-Van Doren Experimental Plot. For over 50 years a variety of experiments have been underway here. We discussed the side-by-side no-till and mold board plowed sites and their ability to sequester carbon. Not plowing (no-till) sequesters carbon and mitigates erosion. Less carbon dioxide to the atmosphere and less sediment flux on the landscape.

no_till

A darker colored soil in the core barrel above shows more carbon in the soil relative to the one below.

DR

A quick stop at Secrest Arboretum to view the famous Dawn Redwoods. Under the proper conditions these trees can grow a meter each year. Our tree-ring data from this stand helps define the optimum conditions for their growth. Planting trees sequesters carbon and helps out in lots of other ways as well.

weather

In addition to the no-till fields and trees at Secrest – there is a meteorological record that spans more than 120 years (note how Tom – far left, seems to be the only student listening to the instructor). These instruments have been keeping track of climate and we will use it to compare with our tree ring study. Our tree ring project asks the question: during the time of European Settlement in Ohio what were the climate conditions like? (precipitation and temperature) and could the widespread deforestation and tile and draining of the region have perturbed the climate (see this video for more on this subject). This question is relevant to the ever-present striving of climate scientists to investigate the relative roles of natural climate variability and anthropogenic change.

 

 

 

 

Wooster’s Fossils of the Week: Upper Carboniferous seed casts from northeastern Ohio

October 31st, 2014

Trigonocarpus trilocularis Hildreth 1838We haven’t had a paleobotanical fossil of the week for awhile, so here are a couple of nice seed casts from the Upper Carboniferous Massillon Sandstone exposed near Youngstown, Ohio. They fall within the “form genus” Trigonocarpus Brongniart 1828. A form taxon is one that may not have any systematic or evolutionary validity, but it is a convenient resting place for taxa that share a particular morphological pattern but can’t be easily classified elsewhere. Trigonocarpus consists of seed casts that are “radially symmetrical, decorticated, and have their surface marked by three prominent ridges” (Gastaldo and Matten, 1978, p. 884). These particular seeds appear to be Trigonocarpus trilocularis (Hildreth, 1837). The taxa here are problematic, of course, because these seeds belong to larger plants that have their own names.
Trigonocarpus trilocularis Hildreth 1838_585These seeds appear to be from medullosalean trees, which were small relatives of today’s cycads. They were common in wetlands throughout North America and Europe during the Carboniferous, especially the Late Carboniferous. The seeds we have were likely attached to small stalks. You can see what appears to be a circular attachment scar above.
Samuel Prescott Hildreth (1783–1863)
Dr. Samuel Prescott Hildreth (1783-1863) was a physician and historian with a keen eye for natural history, especially including fossils and rocks. He was born in Massachusetts of strong Patriot stock and moved to the dangerous territory of Ohio in 1806, settling in Marietta in 1808. Dr. Hildreth is often cited as one of the first scientists in the country west of the Alleghany Mountains. His prolific writing is fast-moving, diverse and interesting, so he must have been a great traveling companion. Dr. Hildreth served in the Ohio Legislature and was on the first Ohio Geological Survey.
HildrethNutThe above is a figure from Hildreth (1837, p. 29) showing the fossil seed he named Carpolithus trilocularis. He wrote that “[t]his nut is probably the fruit of some antediluvian palm”, which is not far from what we think now (apart from the Flood reference!).

References:

Gastaldo, R.A. and Matten, L.C. 1978. Trigonocarpus leeanus, a new species from the Middle Pennsylvanian of southern Illinois. American Journal of Botany 65: 882-890.

Hildreth, S.P. 1837. Miscellaneous observations made during a tour in May, 1835, to the Falls of the Cuyahoga, near Lake Erie: extracted from the diary of a naturalist. American Journal of Science and Arts 31:1-84

Zodrow, E.L. 2004. Note on different kinds of attachments in trigonocarpalean (Medullosales) ovules from the Pennsylvanian Sydney Coalfield, Canada. Atlantic Geology 40: 197-206.

An Epic Geologic Competition in Cuyahoga Valley National Park

October 26th, 2014

VIRGINIA KENDALL, CUYAHOGA VALLEY NATIONAL PARK (CVNP) — What an absolutely awesome day for geology in the field!!  One of my geologic mentors once told me that “every day in the field is a day of vacation”, and today proved to be just that day.  Late October…temperatures above 60 degrees…with the fall colors everywhere!!  I could not have asked for a better day to take my Structural Geology class to “The Ledges”, part of Virginia Kendall, which is only about an hour north of campus.  Essentially, we have a National Park right in northeast Ohio, and fall is the best time to visit the area.

However, we were not just going there for a day hike.  We were on a mission.  I set up a scenario for my class:  CVNP exposes strata that in the subsurface is rich in oil and gas.  The goal for the students was to undertake a complete geologic study (including the stratigraphy, sedimentology, structure, and geomorphology) of the exposed rock in the area as an analog in order to better assess oil and gas fluid migration in the subsurface.  The class was split into two teams — seniors vs juniors.  Each team is not permitted to talk to one another about data collection, analysis, or synthesis.  Eventually, these Research and Development (R&D) Teams will share their findings with Wooster’s Production Experts (Drs. Pollock, Wiles, and Wilson) via a poster presentation later in the semester.

So, while there were literally hundreds of people out for a day hike near The Ledges, Wooster’s geologists were busy at work.  The Ledges is located just south of Happy Days Visitor Center and southeast of Peninsula, OH.

lock-29-location-map_585blogThe area between State Route 303 and Kendall Ledges Road (where there are all the green hiking trails) was our field area for the day.

DSC01285_585blog

The R&D Teams quickly noticed the amazing joint sets that are exposed all along The Ledges.  Essentially, we have ledges in this area due to the large fracture system (i.e., joints) affecting the rocks.  These joint sets are very easy to measure and to access due to a wonderful trail system next to the exposures in Virginia Kendall.  Notice above that these joints can be at various orientations and that those in the photo above appear to be nearly perpendicular to one another.

DSC01271_585blogLet me introduce the R&D Team of Woo seniors (’15), from left to right: Coleman Fitch, Zach Downes, Willy Nelson, and Leo Jones.  It appears that they are discussing their team’s strategy early in the day.  Michael Williams (’16), of the opposing team, is in the background.  Is Michael trying to eavesdrop on the opposing team?

DSC01269_585blogTwo members of our R&D team of Woo juniors (’16) are taking notes on this rock exposure.  Eric Parker (left) and Kaitlin Starr (right, white hat) appear to be focused on the gorgeous geology.

DSC01276_585blogThe other two members of the R&D team of Woo juniors (’16) were found hiding in a dark “slot canyon” among the joints.  Michael Williams is in the front, while Adam Silverstein is in the orange hoodie, peeking out from deep inside the “canyon”.  It appears that the juniors are separated from one another!!  It is OK; everyone had maps and GPS units, so perhaps their strategy for the day was to divide and conquer?

DSC01274_585blogWow!!  Check out this entrance to Ice Box Cave, which was formed by the intersection of several joint sets.  Unfortunately, we were not able to go any closer to the cave entrance than this, because…

DSC01273_585blog…the National Park Service is trying to save the bats, which are susceptible to White-Nose Syndrome.

DSC01278_585blogNow, I could not just end the blog without showing you such a wonderful photo.  Check out the amazing set of cross-beds that you can see exposed in the upper half of the photo.  These rocks, which are some of the youngest rocks exposed in CVNP, have been interpreted to be deposited by ancient stream deposits.  Superimposed on the cross-bedding is the characteristic honeycomb weathering that affects many of the sandstone exposures along The Ledges.  And, notice that some of the rocks appear to be more brown or rust colored; some scientists have identified limonite and pyrite (two iron-rich minerals) in the unit.

What an awesome day to be a geologist!!  Who else gets to spend a great fall day with friends, enjoy the weather, learn a little more about rocks, and measure joints along the way?  Geology rocks.

 

 

Wooster Geologists return to the Cedar Creek Bog and Excavation Site

October 25th, 2014

DigOverview102514WOOSTER, OHIO–Greg Wiles and I got to experience a bit of field archaeology today at the Cedar Creek Mastodon excavation site. Greg’s Climate change class has visited the site and its associated bog twice this semester: once to do some soil probing and exploration, and then again to extract a core from the bog. This time Greg and I went to consult with the chief archaeologist of the site, Nigel Brush of Ashland University. Nigel wanted our opinions on the stratigraphy of the dig, especially those parts associated with mastodon remains and flint artifacts. The hypothesis the archaeologists are testing is that the mastodon bones and flint blades are part of an ancient butchery site.  It was a joy to join our friends on this fantastic Fall day.

BonesFlagged102514Who doesn’t love an archaeology site? All that enthusiastic hard work with brushes, spades and trowels revealing hidden treasures. Those little orange flags above are tagging bits of mastodon bone that the volunteer excavators have uncovered for mapping and collection. Several schools are represented at this site, and at least a couple dozen citizen scientists.

HannahJim102514Wooster is represented at the dig by archaeology professor Nick Kardulias, along with two of his students shown above. Hannah Matulek is on the left; Jim Torpy on the right.

BoneFragment102514Here is some mastodon bone embedded in one of the excavation walls. The bones are scattered, with some large pieces and many small fragments.

Sieving102514This is the line of sieves for sorting through the excavated sediment. Pleasant enough work today, but I can imagine it’s not so fun in the rain and sleet.

GregSoilProbing102514And now for our bit of work. Greg went off into the bog with a soil probe to plan out a new trench to be dug by the landowner. This trench will help correlate the strata in the excavation with what Greg and his students have cored from the bog.

StratView102514I spent most of my time in the excavations examining the simple layering of the sediments. At the bottom we have a coarse conglomerate with cobble-sized rounded grains. The bones and artifacts lie on top of and among these clasts. Above that unit is a matrix-supported conglomeratic mud with broken rock fragments. At the top is a loam representing the disturbed (plowed) part of the section.

MudWithClasts102514This is a closer view of that middle unit with the “floating” angular rock fragments. My quick assessment (just a suggestion!) is that the coarse gravels beneath are part of a deltaic complex feeding into the bog, which was at the time a marl lake. The mud-with-clasts above it is a debris flow from the surrounding elevations that cascaded down the creek channel and its banks, entombing the bones and artifacts under a slurry of muddy debris. There is scattered charcoal throughout this unit and the top of the cobbles below. Maybe a forest fire denuded the upstream slopes and led to a rain-soaked mudslide? Then again, the charcoal could have come from an ancient barbecue of the mastodon meat.

In any case, Greg and I had a great time visiting our archaeological colleagues on such a fine day.

 

Wooster’s Fossil of the Week: A crinoid calyx from the Upper Ordovician of southern Ohio

September 26th, 2014

Xenocrinus baeri (Meek, 1872)_585This week’s contribution from the Wooster collections will be short. If all is going well, as this is posted I’m on my way to the Fourth International Palaeontological Congress in Mendoza, Argentina. I hope to have a few posts from that exotic place!

The fossil above is the crown of a monobathrid crinoid called Xenocrinus baeri (Meek, 1872). It was found by Bianca Hand (Wooster ’14) in the Bull Fork Formation (Upper Ordovician, Richmondian) on an Invertebrate Paleontology field trip to the emergency spillway at Caesar Creek State Park in southern Ohio (seen below). Thank you to my friend Bill Ausich of The Ohio State University for identifying this fossil. It is an unprepared specimen of a common species, and it is not nearly so flashy as in other collections. Still, it is one of the best finds from our class field trips, and it is cool. The calyx is on the right and mostly buried in matrix. Four filter-feeding arms extend to the left. Where the matrix is broken away on the far right you can see tiny ossicles from the pinnules on the arms. Someone using a needle very carefully under a microscope could expose more details of this crinoid, but I like leaving something to the imagination!
CaesarCreek2011References:

Schumacher, G.A. and Ausich, W.I. 198). New Upper Ordovician echinoderm site: Bull Fork Formation, Caesar Creek Reservoir (Warren County, Ohio). The Ohio Journal of Science 83: 60-64.

Wooster’s Fossils of the Week: A hardground with rugose corals from the Upper Ordovician of southern Ohio

September 5th, 2014

Hdgd small 090114The above slab is a carbonate hardground from the Liberty Formation (Upper Ordovician) of southern Ohio. Carbonate hardgrounds are cemented seafloors, so we’re actually looking at the hard rocky bottom of an Ordovician sea. I’ve long found the idea of a hardground fascinating — it is like a bit of ancient time frozen before us. This hardground is especially interesting because of the fossils associated with it. The knobby nature of the surface is probably due to a burrow system that was preferentially cemented and then exhumed by currents that washed away the loose sediment. The intersecting tunnels, now ridges, provided numerous crannies for encrusting, boring and nestling organisms to inhabit. The high points hosted encrusting bryozoans that needed currents for their filter-feeding.

brach coral 090114There are several shelly fossils found in the low points of this hardground surface. The brachiopod in the upper left is the orthid Plaesiomys subquadrata (Hall, 1847), and the conical rugose coral in the lower right is Grewingkia canadensis (Billings, 1862)

two corals 090114Here is another detailed view of the hardground showing a second rugose coral on the left. I suspect that the corals and maybe even the brachiopod are actually in place (or “in situ” to use the fancy words). I’ve seen such occurrences before and passed them off as just examples of loose fossils rolling into holes. Here, though, we can see that both corals have the calyx (the cup in which the coral polyp was located) facing upwards. These G. canadensis corals did not attach to hard substrates like some of their cousins, but lay recumbent and curved upwards on the seafloor. What better place to do so than in the cozy hollows of a hardground?

This slab is certainly a nice vignette of a marine community nearly 450 million years old.

References:

Billings, E. 1862. New species of fossils from different parts of the Lower, Middle, and Upper Silurian rocks of Canada. Paleozoic Fossils, Volume 1, Canadian Geological Survey, p. 96-168.

Hall, J. 1847. Paleontology of New York, v. 1: Albany, State of New York, 338 p.

Palmer, T.J. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia 15: 309–323.

Wilson, M.A. and Palmer, T.J. 1992. Hardgrounds and hardground faunas. University of Wales, Aberystwyth, Institute of Earth Studies Publications 9: 1–131.

Wooster’s Fossils of the Week: Rugose corals from the Upper Ordovician of Ohio

December 22nd, 2013

585px-LibertyFormationSlab092313College of Wooster student Willy Nelson spotted and collected up this beautiful Liberty Formation slab on our 2013 Invertebrate Paleontology course field trip to the Upper Ordovician of the Caesar Creek area in southern Ohio. There are many exquisite fossils on this apparent carbonate hardground (a cemented seafloor), the most prominent of which are the four linked circular corallites in the top center. They are of the species Streptelasma divaricans (Nicholson, 1875), shown in more detail below.

Streptelasma divaricans (Nicholson, 1875) 585Streptelasma divaricans is a rugose coral, a prominent order that dominated the Paleozoic coral world from the Ordovician into the Permian. Unlike most rugose corals, it usually is found attached to some hard surface like a shell, rock or hardground. S. divaricans is relatively rare in the Upper Ordovician of the Cincinnati area compared to its free-living cousin Grewingkia canadensis. In its adult form (as seen here) it can have about 60 septa (vertical partitions radiating from the center), alternating from small to large and often with a twist at the center. In life there would have been a tentacle-bearing polyp sitting in each of these septate cups (corallites) catching tiny prey as it passed by in the water currents. We presume that they lived much like modern corals today. S. divaricans was, by the way, an invading species in this Late Ordovician shallow sea community.

Streptelasma divaricans was named as Palaeophyllum divaricans in 1875 by Henry Alleyne Nicholson (1844-1899). We met Dr. Nicholson in an earlier blogpost. Astonishingly, one of our  geology majors in the paleontology course this semester is Brittany Nicholson, a direct descendant. Way cool.
WillyBrachiopodLepidocyclusperlamellosus092313Another nice fossil on Willy’s slab (in the upper right) is the rhynchonellid brachiopod Lepidocyclus perlamellosus, shown closer above.
WillyBivalve092313The curved, indented line in the middle of the slab (shown above) appears to be the outline of a bivalve shell. The original shell was made of aragonite and thus dissolved away very early (possibly even on the seafloor before burial). There is not enough shape remaining to identify it. The twig-like fossil with tiny holes above the scale is, of course, a trepostome bryozoan. You didn’t need me to tell you that!

References:

Elias, R.J. 1983. Middle and Upper Ordovician solitary rugose corals of the Cincinnati Arch region. United States Geological Survey Professional Paper 1066-N: 1-13.

Elias, R.J. 1989. Extinctions and origins of solitary rugose corals, latest Ordovician to earliest Silurian in North America. Fossil Cnidaria 5: 319-326.

Nicholson, H.A. 1875. Description of the corals of the Silurian and Devonian systems. Ohio Geological Survey Report, v. 2, part 2, p. 181-242.

Patzkowsky, M.E. and Holland, S.M. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33: 295-309.

A paleontology field trip into the Upper Ordovician of Ohio

September 8th, 2013

DSC_2515The 2013 Invertebrate Paleontology class at Wooster had its first field trip today. The weather was absolutely perfect, and the usual boatload of fossils was collected. We traveled this year to Caesar Creek State Park and worked in the emergency spillway created and maintained by the US Army Corps of Engineers for the Caesar Creek Lake dam. Exposed here are the Arnheim, Waynesville, Liberty and Whitewater Formations of the Richmondian Stage in the Cincinnatian Series of the Ordovician System. These units are enormously rich with fossils, especially brachiopods, bryozoans, trilobites, clams, snails, nautiloids, corals and crinoids. There is no better place to get students started on paleontological fieldwork, and to follow up with lab preparation, identification and interpretation throughout the semester.

Spillway090813The Caesar Creek Lake emergency spillway is at N 39.480069°, W 84.056832° along Clarksville Road just south of the dam. The authorities keep it clear of vegetation, and so it is an extensive exposure of bare rock and sediment. The sharp southern boundary is the rock wall shown in the top image (with the intrepid Willy Nelson and Zach Downes). Students quickly fanned out along the entire exposure, so I never did get an image of the whole class of 22 students in one place.

DSC_2505This is the bedding plane of a slab of micritic limestone with numerous worm burrows. Trace fossils are very abundant here. These units, in fact, have some of the first trace fossils to be specifically described in North America.

DSC_2506On some limestone slabs are internal and external molds of straight orthocerid nautiloids. They are often paired like this, with both facing in the same direction. This is an effect of seafloor currents that oriented the shells. The current here was flowing from the left to the right.

DSC_2508Many of the limestones are extremely rich in shelly fossils. Here you can see several types of brachiopods, an isotelid trilobite genal spine, and some molluscan internal molds.

DSC_2511I always check in here with my favorite borings: Petroxestes pera. These are bivalve incisions on a cemented seafloor (a carbonate hardground). This is the type area for this ichnogenus and ichnospecies.

DSC_2512Two of our sophomore paleo students, Michael Williams and Adam Silverstein, are here happily filling their sample bags with fossils. I wanted to get a photo of them in the field because they had such a geologically adventurous summer in both cool and wet Iceland and hot, dry Utah. Not many sophomores have these opportunities!

DSC_2520Here is another pair of nautiloids, this time showing the characteristic internal mold features of curved septal walls. Again they are nestled together and oriented because of seafloor currents.

For the rest of the semester the paleo students will be studying the fossils they collected today, each eventually constructing a paleoecological interpretation based on their identifications and growing knowledge of marine invertebrate life habits and history. Now we’re really doing paleontology!

Sed/Strat goes local with its field trip: the Meadville Shale and the Logan Formation (Lower Carboniferous)

April 27th, 2013

MeadvilleB042713WOOSTER, OHIO–The traditional spring field trip in the Sedimentology & Stratigraphy course at Wooster is taken several hours south, usually in Jackson County or, as last year, in a soggy quarry outside of Dayton. This time, though, we stayed nearby, measuring and describing the local bedrock: the Meadville Shale Member and the Logan Formation, both in the Lower Carboniferous. We had a spectacular day with the best weather Ohio can offer.

Our first location, shown above, was in Lodi Community Park about 20 miles north of Wooster. A tributary of the Black River (the East Fork Black River) flows through a small valley, exposing the Meadville Shale in its steep sides. The Meadville is a member of the Cuyahoga Formation and is late Kinderhookian in age. The students above are beginning to measure the unit with their Jacob’s staffs.

MeadvilleA042713Candy Thornton and William Harrison are here at the exposed base of the Meadville. They’re taking a break from geology to examine a salamander they found on this fine spring morning.

Spiriferid042713 The Meadville is in part very fossiliferous. We found crinoids, bryozoans, bivalves and brachiopods like this nice spiriferid above.

FluteMarks042713 An interesting feature on the soles of some thin siltstones are these long, parallel grooves called flute marks. They were made when shells were dragged across a muddy substrate, leaving scour marks. We think they represent the basal unit of thin turbidites formed by sediment slurries that flowed across the seafloor.

SarahF042713Sarah Frederick climbed high on the outcrop with a measuring staff to describe the transition from a silty shale to a very fine sandstone.

PicnicTable042713Here a group of Wooster geologists compares notes as they construct their stratigraphic columns. Yes, this sunlight felt very good to us.

Logan042713Our afternoon stop was in southeastern Wooster along the onramp from north Route 83 to east Route 30. The Logan Formation exposed here is a Lower Carboniferous (early Osagean) very fine sandstone and conglomerate. This site is near what was once known as “Little Arizona” to older Wooster geologists. That exposure was mostly removed when this new onramp was constructed.

Conglomerate042713The base of the Logan has an extensive conglomerate sometimes referred to as the Berne Member. As you can see, it mostly consists of rounded quartz and chert pebbles, making it a very mature sediment.

Dewatering042713One of the distinctive features of this Logan outcrop are these large dewatering structures. These form when a water-rich slurry of sediment is forced upwards through the sediment above. Vertical channels are made between the rounded bases of sandstone bodies. One interpretation of these structures is that they were produced an earthquake shaking the water-saturated sediment. If this was the case, we would call these seismites.

LoganGroup042713Here a happy group of geologists is returning to the vans with various fossil and rock specimens. Now it’s time to write the reports!

 

 

Wooster’s Fossil of the Week: A camerate crinoid from the Lower Carboniferous of north-central Ohio

April 7th, 2013

Cusacrinus_daphne033013Visitors often bring rocks and fossils to the Geology Department for identification. We love to solve the puzzles (or at least make the attempt), and our new friends appreciate names and ages for their treasures. (Usually. We’ve disappointed more than a few finders of “meteorites”.) Last week a home-schooling group came in from nearby Ashland with a tray of stones they found in a stream bed eroding an exposure of the Lower Carboniferous (Kinderhookian) Meadville Shale Member of the Cuyahoga Formation. One of the objects was the spectacular fossil shown above.

This is a calyx and the attached arms (essentially the “head”) of a camerate crinoid known as Cusacrinus daphne (Hall, 1863). (Our friend Bill Ausich of Ohio State University provided the identification — these crinoids are his speciality.) It is preserved as an external mold, meaning that the actual skeleton was covered in sediment (or in this case a concretion) and then dissolved away, leaving a cavity showing a mold of its exterior details. It is a rare fossil to find in our part of the world.

CrinoidCalyx033013Above is a close-up of the calyx of Cusacrinus daphne (Hall, 1863). Note the radiating ridges on the exteriors of each thecal plate. They are characteristic of this species.

CrinoidArms033013These are some of the arms of the crinoid. They are complex because each arm is lined with tiny branches called pinnules, making feather-like extensions for filter-feeding.

Thank you to our new Ashland friends for sharing such a beauty with us!

References:

Ausich, W.I. and Roeser, E.W. 2012. Camerate and disparid crinoids from the Late Kinderhookian Meadville Shale, Cuyahoga Formation of Ohio. Journal of Paleontology 86: 488-507.

Kammer, T.W. and Roeser, E.W. 2012. Cladid crinoids from the Late Kinderhookian Meadville Shale, Cuyahoga Formation of Ohio. Journal of Paleontology 86: 470-487.

Next »