Concluding 2018 summer research in the Tree Ring Lab

July 27th, 2018

Summer 2018 research in the Tree Ring Lab has come to a close. The group of five students worked on a variety of projects, learning about the climate and history of Ohio and Alaska, and the application of different dendrochronological techniques and statistical analyses. They also gained experience effectively conveying their research to others and writing official reports of their findings.

The summer research team on their last day working together (Left to right: Greg Wiles, Nick Wiesenberg, Victoria Race ’19, Juwan Shabazz ’19, Kendra Devereux ’21, Josh Charlton ’19, and Alexis Lanier ’20).

AMRE students with a sampled oak tree at Brown’s Lake Bog in Wooster, Ohio (Alexis Lanier ’20, Juwan Shabazz ’19, and Kendra Devereux ’21).

The AMRE team accomplished a lot during the eight weeks they were here on campus. Their research started with the principles of dendrochronology, when they learned how to count individual tree rings and measure their widths under the microscopes. From here, the team learned how to run this data in different programs like COFECHA and ARSTAN. This process allowed them to date many historical structures across Northeast Ohio such as Gingery Barn and Miller House and Barn. You can find a full list on the TRL’s reports page.

AMRE students with Nick Wiesenberg collecting samples from historical structures at Sonnenberg Village in Kidron, Ohio.

Alexis and Kendra visiting one of the historical structures at Sonnenberg Village.

The AMRE students also learned how to take these chronologies and make hypotheses regarding past climate by uploading the data to Climate Explorer and running various correlations with other datasets.

We were fortunate enough to go out in the field and personally collect most of the data that we worked with this summer. These eventful trips included a lot of tree coring and required lots of bug spray. Some of the AMRE group’s favorites trips included Stebbin’s Gulch and Brown’s Lake Bog.

Stebbin’s Gulch at the Holden Arboretum (Left to right: Josh Charlton ’19, Juwan Shabazz ’19, Alexis Lanier ’20, Kendra Devereux ’21, and Dr. Wiles).

Juwan with the machete, ready to clear a path for the rest of the team at Brown’s Lake Bog.

Lining up to cross the moat at Brown’s Lake Bog after a weekend of strong thunderstorms.

Kendra Devereux ’21 with the sample bag at Barnes Preserve in Wayne County.

Josh Charlton ’19 coring a tree at Stebbin’s Gulch in the Holden Arboretum.

The other two summer researchers working in the Tree Ring Lab this summer, seniors Victoria Race and Josh Charlton, have been working with tree ring data collected from Alaska. Their work focuses on the modeling of Columbia Glacier located in Prince William Sound, Alaska. They are currently working on an abstract to submit to the upcoming GSA conference this fall. Stay tuned for more information regarding their project!

AMRE students with Victoria Race ’19 and Arrow at Brown’s Lake Bog.

Special thanks to the National Science Foundation, the Sherman Fairchild Foundation and the AMRE program for helping to make this research possible. Enjoy the rest of your summer!

A geological and archaeological hike in northeastern Ohio on the last day of winter

March 19th, 2018

It was a beautiful latest-winter day in Wooster. Nick Wiesenberg had the great idea of taking an afternoon to hike through Pee Wee Hollow, a wooded area of ravines, streams and rocky exposures a few miles northwest of Wooster near the village of Congress. Greg Wiles, his faithful dog Arrow, and I went along. We had an excellent time with no agenda but to explore. Above is Dr. Wiles standing at an outcrop of Lower Carboniferous sandstones, shales and conglomerates making up the Logan Formation. The rocks are similar to those exposed in Spangler Park.

Pee Wee Hollow has three small Native American mounds on an upper plateau. Nick and Arrow are standing on one above. They were excavated in the 1950s, and possibly pillaged long before that. Dr. Nick Kardulias, Dr. Wiles and several others wrote a paper on these mounds. I can quote the abstract entirely: “While a great deal is known about the many earthworks of central and southern Ohio, there is a gap in our data about such features in the northern part of the state. The present report is an effort to bring work on one such site in Wayne County into the literature. The Pee Wee Hollow Mound group consists of three small circular earthen structures and a possible fortification trench on a high bluff overlooking the main stream that drains the county. Systematic excavation by avocational archaeologists in the 1950s revealed the structure of the mounds and retrieved a small assemblage of artifacts, some charcoal, and pockets of red ochre. Recent analysis of the artifacts, coupled with radiocarbon dating, indicates that the site was a location of some local importance from the Late Archaic through the Middle to Late Woodland periods.” (Pennsylvania Archaeologist 84(1):62-75; 2014)

Another of the mounds with Greg and Arrow for scale.
The very fine sandstones of the Logan Formation are especially well exposed in the creek beds. Here are a set of joints our structural geologist Dr. Shelley Judge would appreciate.

There are even some nice Bigfoot field structures. Who knew?We spent most of our time walking up Shade Creek. The creek bed is mostly Logan Formation sandstones.

Greg is standing here on a bedding planes of sandstone with nice ancient ripple marks. Note, by the way, the chunk of ice above his head. Still winter, but not for long.

Here’s a closer view of those ripples.Arrow here contemplates a thick exposure of dark gray shale. Greg found some nice crinoid columns in it, and I found several molds of bivalves.

The more resistant units in the Logan have the best fossils. This slab of very fine sandstone cemented with iron carbonates (a type of siderite concretion) has several internal molds of brachiopods and white calcitic crinoid columns. I described the remarkable preservation of similar crinoids in an earlier series of blog posts.

A nice, uncomplicated walk in a beautiful bit of nature.

How to Combat a Drought

November 14th, 2017

About a month ago, I wrote on this blog about an exceptionally dry late summer for Wooster.  It was dry enough to put much of northeast Ohio in a moderate drought.  But of course the moment I published that blog post, it started to rain… and historically so.  Using the Wooster Experimental Station data going back to 1900, Wooster has gone from one of the driest August-September periods to one of the wettest October-early Novembers.  The average precipitation in Wooster for Oct 3 through Nov 7 is 2.99″.  This year, we had 6.91″, more than double the average and ranking third highest ever (0.46″ lower than the record from 1954).*

So this brings us to two important questions: 1) Did this kick the drought? and 2) Why did this happen?

Figure 1. Change in drought levels for Ohio from October 3 to November 7. Data from US Drought Monitor. Wayne County is all still abnormally dry or in moderate drought, but the dryness has waned considerably.

To answer the first question: almost, but not quite.  Figure 1 shows the change in drought levels from October 3 to November 7.  The area of Ohio experiencing drought shrunk from 11% to 6% of the state, although half of Wayne County is still “in the beige”. Areas experiencing either “dryness” or “drought” shrunk from 40% to 22% of the state. The rate of evapotranspiration is also at play here, but the change in rain fortunes has likely been the main driver in alleviating the dry spell.

That second question — why did we oscillate from very dry to very wet? — has a coy answer and a serious answer.  Coy answer: The weather is fickle. Serious answer: It’s all about the polar jet stream.  The polar jet stream is a narrow band of strong westerly winds that sits up roughly 10 km (6 mi) above sea level.  Especially in winter, this jet stream is main conveyor belt of storms that affect Ohio. In a typical August and September, it usually sits a bit north of us, just north of the US-Canada border (Figure 2, upper-left), occasionally giving Ohio rain.  This year (lower left), the main jet stream path was much farther north than normal, just grazing the Canadian Arctic Archipelago.  It was a non-factor this summer for Ohio.  This abnormal ridge was also associated with a large high pressure area over most of North America.  High pressure typically means calmer, warmer summer weather — and that is precisely what we had in the Midwest. These two features — the ridge in the jet stream and the high pressure at the surface — reinforced each other to create the dry conditions in late summer.

Figure 2. Comparing jet stream patterns and “blocking highs” from August to mid-November 2017 to normal. The star (roughly) indicates Wooster Ohio. Stylized from NCEP-NCAR Reanalysis.

But since about October 3, the jet stream pattern has shifted.  A normal October has the jet stream shift southward a little anyway (Figure 2, upper right), but this year it pushed much farther south than normal over the western half of the country (lower right).  This put Ohio in a prime position to receive more storms than normal — just downwind of a big trough in the jet stream. Related to this, a smaller blocking high set up off the coast of New England and Nova Scotia, which helped direct warm, wet Atlantic air over the Appalachians and toward Wooster. The best example of the results came from the November 5 storm, when nearly 2″ of rain was accompanied by tornado warnings across several Ohio counties.

*Footnote: The start and end dates of October 3 and November 7 are rather arbitrary, but 2017 still ranks in the top ten rainiest years out of 117 even if you add or subtract a few days — so long as you include the big rain storm from November 5.

References:

Mason, John (2013 May 20). “A Rough Guide to the Jet Stream”. Skeptical Science. Retrieved 13 Nov 2017. https://skepticalscience.com/jetstream-guide.html

Kalnay, E. and Coauthors (1996). The NCEP/NCAR Reanalysis 40-year Project. Bull. Amer. Meteor. Soc., 77, 437-471.  https://www.esrl.noaa.gov/psd/data/composites/day/

United States Drought Monitor. The National Drought Mitigation Center. Retrieved 13 Nov 2017. http://droughtmonitor.unl.edu/Maps/CompareTwoWeeks.aspx

Wooster Experimental Station at Climate Data Online (1900 – 2017). NOAA. Retrieved 13 Nov 2017. https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00339312/detail

Wooster’s Fossil of the Week: a medullosalean pteridosperm (Upper Carboniferous of northeastern Ohio)

May 5th, 2017

It is time we had another fossil plant in this series. The above specimen is Neuropteris ovata Hoffmann 1826, a relatively common bit of foliage in the Upper Carboniferous of North America. This is a pteridosperm, more commonly known as a seed fern. They weren’t really ferns at all but fern-like plants with some of the first real seeds. They are usually reconstructed as trees, but were also known to be bushy or even like climbing vines.

The taxonomy (naming system) of fossil plants can be very complicated because different plant parts were given different names at different times. A single plant species, then, could have a list of names for its foliage, bark, roots, seeds, etc. The name Neuropteris usually thus refers to the leaves of this particular pteridosperm.

Neuropteris ovata is famous for its use in studies of the distribution of stomata on its leaf surfaces. Stomata, sometimes called guard cells, regulate gas exchange and moisture retention in vascular land plants. The density of stomata on N. ovata leaves in the Late Carboniferous may reflect changes in carbon dioxide levels and the expansion and contraction of tropical forests (Cleal et al., 1999).

Neuropteris ovata was named by Friedrich Hoffmann (1797-1836), a Professor of Geology at the University of Berlin. I wish I knew more about him because not only did he do considerable paleobotanical research, he was also well known for his work on volcanoes in Italy. You don’t see that combination very often!

References:

Beeler, H.E. 1983. Anatomy and frond architecture of Neuropteris ovata and N. scheuchzeri from the Upper Pennsylvanian of the Appalachian Basin. Canadian Journal of Botany 61: 2352-2368.

Cleal, C.J., James, R.M. and Zodrow, E.L. 1999. Variation in stomatal density in the Late Carboniferous gymnosperm frond Neuropteris ovata. Palaios 14: 180-185.

Hoffmann, F. 1826. Untersuchungen über die Pänzen-Reste des Kohlengebirges von Ibbenbühren und von Piesberg bei Osnabrück. Archiv für Bergbau und Hüttenwesen 13: 266-282.

Zodrow, E.L. and Cleal, C.J. 1988. The structure of the Carboniferous pteridosperm frond Neuropteris ovata Hoffman. Palaeontographica Abteilung Palaophytologie 208: 105-124.

[Originally posted on October 23, 2011.]

Wooster’s Fossils of the Week: Bivalve escape trace fossils (Devonian and Cretaceous)

April 7th, 2017

It is time again to dip into the wonderful world of trace fossils. These are tracks, trails, burrows and other evidence of organism behavior. The specimen above is an example. It is Lockeia James, 1879, from the Dakota Formation (Upper Cretaceous). These are traces attributed to infaunal (living within the sediment) bivalves trying to escape deeper burial by storm-deposited sediment. If you look closely, you can see thin horizontal lines made by the clams as they pushed upwards. These structures belong to a behavioral category called Fugichnia (from the Latin fug for “flee”). They are excellent evidence for … you guessed it … ancient storms.
The specimens above are also Lockeia, but from much older rocks (the Chagrin Shale, Upper Devonian of northeastern Ohio). Both slabs show the fossil traces preserved in reverse as sediment that filled the holes rather than the holes themselves. These are the bottoms of the sedimentary beds. We call this preservation, in our most excellent paleontological terminology, convex hyporelief. (Convex for sticking out; hyporelief for being on the underside of the bed.)

The traces we know as Lockeia are sometimes incorrectly referred to as Pelecypodichnus, but Lockeia has ichnotaxonomic priority (it was the earliest name). Maples and West (1989) sort that out for us.
Uriah Pierson James (1811-1889) named Lockeia. He was one of the great amateur Cincinnatian fossil collectors and chroniclers. In 1845, he guided the premier geologist of the time, Charles Lyell, through the Cincinnati hills examining the spectacular Ordovician fossils there. He was the father of Joseph Francis James (1857-1897), one of the early systematic ichnologists.

References:

James, U.P. 1879. The Paleontologist, No. 3. Privately published, Cincinnati, Ohio. p. 17-24.

Maples, C.G. and Ronald R. West, R.R. 1989. Lockeia, not Pelecypodichnus. Journal of Paleontology 63: 694-696.

Radley, J.D., Barker, M.J. and Munt, M.C. 1998. Bivalve trace fossils (Lockeia) from the Barnes High Sandstone (Wealden Group, Lower Cretaceous) of the Wessex Sub-basin, southern England. Cretaceous Research 19: 505-509.

[Originally published January 29, 2012]

Wooster’s Fossils of the Week: Strophomenid brachiopods from the Upper Ordovician of southern Ohio

March 24th, 2017

Usually I find fossils in the field or lab and then craft a Fossil of the Week entry around them. This time, though, I started with a paper and then searched for fossils to illustrate it. I found this recent paper very well done:

Bauer, J.E. and Stigall, A.L. 2016. A combined morphometric and phylogenetic revision of the Late Ordovician brachiopod genera Eochonetes and Thaerodonta. Journal of Paleontology 90: 888-909.

It does classic systematics on a group of brachiopods with the modern tools of morphometric and phylogenetic analyses. Its conclusions are direct and convincing: The genus Thaerodonta is synonymous with Eochonetes, and a variety of species are shifted around, solving problems that have lingered for over a century, Plus as a bonus, who can’t love a new species named Eochonetes voldemortus? So I set out to find specimens of this brachiopod group in our collections. Above are internal valve views of the brachiopod Eochonetes clarksvillensis (Foerste, 1912), showing characteristic denticles (little teeth) along the hinge line. Below are external valve views. Jen Bauer herself kindly confirmed the identifications!

These specimens come from the Waynesville Formation (Katian) exposed at Caesar Creek in southern Ohio, a place we have had many paleontology field trips. E. clarksvillensis is common in the Waynesville and overlying Liberty formations. Read much more about it in Bauer and Stigall (2016).

The genus Eochonetes was named by Frederick Richard Cowper Reed in 1917 from the Ordovician of Scotland. (The British Isles were not too far away from Ohio in the Late Ordovician.) Reed was born in London in 1869 and died in Cambridge, England, in 1946. I tried mightily but could find no images of him to enter into the digital archives of the web. He was a smart and diverse geologist, attending Trinity College, Cambridge, and winning important awards and scholarships. He was appointed assistant to the Woodwardian Professor of Geology at Cambridge in 1892, a position he kept until retirement. In 1901 he earned the Sedgwick Prize for his work on the rivers of East Yorkshire, wrote a book on the geology of the British Empire (much easier to do today!), and yet still found time to describe fossils in numerous papers.

The author of Eochonetes clarksvillensis is much better known to paleontologists of the Cincinnati region. It is August F. Foerste (1862-1936), who named Thaerodonta clarksvillensis in 1912. Foerste grew up and worked in the Dayton, Ohio, area, graduating from Denison University after publishing many papers as a student. He returned to Dayton after earning a PhD from Harvard, teaching high school for 38 years. When he retired he turned down a teaching position at the University of Chicago and instead worked at the Smithsonian Institution until the end of his life. He is one of the giants of the Cincinnati School of paleontology.

References:

Bauer, J.E. and Stigall, A.L. 2016. A combined morphometric and phylogenetic revision of the Late Ordovician brachiopod genera Eochonetes and Thaerodonta. Journal of Paleontology 90: 888-909.

Reed, F.R.C. 1917. The Ordovician and Silurian Brachiopoda of the Girvan District: Transactions of the Royal Society of Edinburgh 51: 795–998.

Wooster’s Fossil of the Week: A stromatoporoid (Middle Devonian of central Ohio)

February 17th, 2017

Stromatoporoids are very common fossils in the Silurian and Devonian of Ohio and Indiana, especially in carbonate rocks like the Columbus Limestone (from which the above specimen was collected). Wooster geologists encountered them frequently on our Estonia expeditions in the last few years, and we worked with at least their functional equivalents in the Jurassic of Israel (Wilson et al., 2008).

For their abundance, though, stromatoporoids still are a bit mysterious. We know for sure that they were marine animals of some kind, and they formed reefs in clear, warm seas rich in calcium carbonate (DaSilva et al., 2011). Because of this tropical habit, early workers believed they were some kind of coral, but now most paleontologists believe they were sponges. Stromatoporoids appear in the Ordovician and are abundant into the Early Carboniferous. The group seems to disappear until the Mesozoic, when they again become common with the same form and life habits lasting until extinction in the Late Cretaceous (Stearn et al., 1999).

The typical stromatoporoid has a thick skeleton of calcite with horizontal laminae, vertical pillars, mounds on the upper surface called mamelons, and dendritic canals called astrorhizae shallowly inscribed on the mamelons. These astrorhizae are the key to deciphering what the stromatoproids. They are very similar to those on modern hard sponges called sclerosponges. Stromatoporoids appear to be a kind of sclerosponge with a few significant differences (like a calcitic instead of an aragonitic skeleton).

Stromatoporoid anatomy from Boardman et al. (1987).

Top surface of a stromatoporoid from the Columbus Limestone showing the mamelons.

There is considerable debate about whether the Paleozoic stromatoporoids are really ancestral to the Mesozoic versions. There may instead be some kind of evolutionary convergence between two groups of hard sponges. The arguments are usually at the microscopic level!

The stromatoporoids were originally named by Nicholson and Murie in 1878. This gives us a chance to introduce another 19th Century paleontologist whose name we often see on common fossil taxa: Henry Alleyne Nicholson (1844-1899). Nicholson was a biologist and geologist born in England and educated in Germany and Scotland. He was an accomplished writer, authoring several popular textbooks, and a spectacular artist of the natural world. Nicholson taught in many universities in Canada and Great Britain, finally ending his career as Regius Professor of Natural History at the University of Aberdeen.

Henry Alleyne Nicholson (1844-1899) from the University of Aberdeen museum website.

References:

Boardman, R.S., Cheetham, A.H. and Rowell, A.J. 1987. Fossil Invertebrates. Wiley Publishers. 728 pages.

DaSilva, A., Kershaw, S. and Boulvain, F. 2011. Stromatoporoid palaeoecology in the Frasnian (Upper Devonian) Belgian platform, and its applications in interpretation of carbonate platform environments. Palaeontology 54: 883–905.

Nicholson, H.A. and Murie, J. 1878. On the minute structure of Stromatopora and its allies. Linnean Society, Journal of Zoology 14: 187-246.

Stearn, C.W., Webby, B.D., Nestor, H. and Stock, C.W. 1999. Revised classification and terminology of Palaeozoic stromatoporoids. Acta Palaeontologica Polonica 44: 1-70.

Wilson, M.A., Feldman, H.R., Bowen, J.C. and Avni, Y. 2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 263: 24-29.

[Originally published on October 30, 2011]

Wooster’s Fossils of the Week: Upper Ordovician brachiopods and bryozoans from paleontology class collections

January 6th, 2017

1-geopetal-tommyLast semester the Invertebrate Paleontology class at Wooster had its annual field trip into the Upper Ordovician of southern Ohio. We had a great, if a bit muddy, time collecting fossils for each student’s semester-long project preparing, identifying, and interpreting their specimens. Like all research, especially when it starts in the field, there were discoveries and surprises. I always highlight a particular specimen collecting by a student in this blog.

Above is a cross-section of a specimen found by Tommy Peterson (’19). It is the rhynchonellid brachiopod Hiscobeccus capax almost completely enveloped by an encrusting trepostome bryozoan. We’ve cut through the center of the brachiopod, revealing gray micritic sediment and clear calcite crystals. We can infer from this simple specimen that the brachiopod died and its shell remained articulated. Sediment drifted in, filling the bottom half of the shell. The bryozoan eventually sealed it all up as it used the brachiopod shell for a hard substrate on a muddy seafloor. The remaining void space was filled in by the precipitation of calcite crystals. You can see that the crystals nucleated from the outer margin of the cavity and grew inwards, a kind of calcareous geode. I’m intrigued by the irregular sediment surface and the manner in which calcite nucleated upwards from it. I suspect this sediment was itself cemented before the calcite crystals appeared.

This kind of structure is called a geopetal. It shows the “way up” at the time of crystal formation. Gravity held the pocket of sediment in the bottom of the shell, leaving the void at the top. Nice little specimen.

2-constellaria-alexisThis star-studded bryozoan found by Alexis Lanier (’20) was going to be the Fossil of the Week, but then I saw that last year I highlighted the very same species! I think the bryozoan Constellaria is cool. Read all about it and its history at the link.

3-table-of-traysHere are the completed specimen trays for half the class. (Grading this project took, as you might imagine, considerable time!). Every week in lab, after we had done the assigned work, we got out the trays and cleaned, prepared, and identified the specimens. Students learned how to use the rock saws and make acetate peels of the bryozoans and corals.

4-tray-insideInside a typical tray. We are very grateful for the many online sources to aid identification of these Cincinnatian fossils. Three in particular were most valuable: Alycia Stigall’s Digital Atlas of Ordovician Life, Steve Holland’s stratigraphic and paleontological guide to the Cincinnatian, and the spectacular Dry Dredgers website.

Ohio is a paleontological paradise!

Wooster’s Fossil of the Week: Spiriferinid brachiopod from the Lower Carboniferous of Ohio

October 14th, 2016

syringothyris-texta-hall-1857-anterior-585Sometimes I choose a Fossil of the Week from our Invertebrate Paleontology teaching collection because students have responded to it in some way. This week’s fossil brachiopod has confused my students a bit because it is an internal mold (unusual for brachiopods in our experience) and a member of the Order Spiriferinida rather than the Order Spiriferida. (Catch that? The difference is in two letters.) It is Syringothyris texta (Hall 1857) from a local exposure of the Logan Formation (Lower Carboniferous). Above is a view of the anterior showing the medial fold and sulcus (like an anticline). This, by the way, is the largest brachiopod in our collection.

syringothyris-texta-hall-1857-posterior-585Syringothyris Winchell, 1863, is a genus within the order Spiriferinida, as noted before. This order was erected in 1994, pulling it from the more familiar Order Spiriferida. In this preservation, the spiriferinids are distinguished by a high cardinal area in the posterior (shown above). Not much higher than the spiriferids, truth be told.

syringothyris-texta-hall-1857-dorsal-585This is a view of the dorsal valve side of this internal mold. Note the absence of ribs (plicae) on the fold in the middle.

a_winchellThe geologist and paleontologist Alexander Winchell (1824-1891) named and described the genus Syringothyris. We met Winchell before in this blog as he described many common fossil taxa in the Midwest. He was born in upstate New York, a seventh-generation New Englander. In 1847 he was graduated from Wesleyan University in Connecticut. He had a varied and peripatetic career, spending most of his time as a teacher of science. He first taught in New Jersey, New York and Alabama, staying a short time in each place. He founded the Mesopotamia Female Seminary in Eutaw, Alabama, and became president (briefly) of Masonic University in Selma. In 1854, Winchell was appointed professor of physics and civil engineering at the University of Michigan, a position that soon became geology and paleontology. Five years later he became the state geologist of Michigan, a job characterized by an apparently difficult relationship with his superiors. In 1872 he left Michigan to be chancellor of Syracuse University, lasting only two years. Next he was a professor of geology and zoology at Vanderbilt University, a position he was forced to resign from in 1878 due to his unbiblical views of evolution. Winchell then returned to the University of Michigan, again as a professor of geology and paleontology. There is where he died.

Winchell’s views on evolution were complicated by his religiosity, and his religious life was made difficult by evolution. He developed a kind of transcendental Darwinism in which selection was reduced to inflexible laws from the Creator, a view we would today call Intelligent Design. He then confused it all by writing a popular book called Preadamites, published in 1880. The darker races, he said, lived in Europe and Asia before Adam. Adam and the subsequent “Noachites” were derived from Negroes, according to Winchell, advancing steadily in intellectual development and whiteness while the black race and other Preadamites were left behind. This work is profoundly racist and pseudoscientific, despite the Darwinian gloss he attempted to paint over it.

a-screen-shot-2016-10-10-at-8-49-42-pmb-screen-shot-2016-10-10-at-8-57-04-pmFrontispiece of Winchell (1880).

References:

Bork, K.B. and Malcuit, R.J. 1979. Paleoenvironments of the Cuyahoga and Logan Formations (Mississippian) of central Ohio. Geological Society of America Bulletin 90: 89–113.

Vörös, A., Kocsis, Á.T. and Pálfy, J. 2016. Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 457: 233-241.

Winchell, A. 1863. Descriptions of FOSSILS from the Yellow Sandstones lying beneath the “Burlington Limestone,” at Burlington, Iowa. Academy of Natural Sciences of Philadelphia, Proceedings, Ser. 2, vol. 7: 2-25.

Winchell, A. 1880. Preadamites; or a demonstration of the existence of men before Adam. Chicago, S.C. Griggs and Company; 500 p.

Wooster’s Fossils of the Week: Ordovician cryptostome bryozoans from southern Ohio

September 23rd, 2016

waynesville-cryptostomesA short entry this week because the annual meetings of the Geological Society of America and Paleontological Society begin this weekend in Denver. (Wooster is sending 17 students this year. Seventeen! A record for us.)

The above image is a detail from a slab of limestone collected from the Waynesville Formation (Upper Ordovician, Katian) on a class field trip earlier this month to Caesar Creek, Warren County, Ohio.  The stick-like fossils are mostly cryptostome bryozoans generally aligned by the last of some ancient water current. Cryptostomes are small and fussy  bryozoans, and thus hard to work with. There hasn’t been a significant overview of Ohio Ordovician cryptostomes for quite awhile, so I suspect there is much new to learn about them.

The following posts will be from Denver!

Next »