A day in the Zohar and Matmor Formations of the Negev

March 15th, 2016

1 Zohar outcrop 031516MITZPE RAMON, ISRAEL — It was another very windy day in southern Israel, but still just fine for fieldwork. Yael Edelman-Furstenburg, Yael Leshno and I returned to Makhtesh Gadol to work on Yael Leshno’s data collection procedures for her PhD project in the Middle Jurassic sequence here. Our first task was figuring out the detailed stratigraphy, which is not especially easy considering all the faulting and somewhat dated lithological descriptions for orientation. The above image is of the Zohar Formation just below its contact with the Kidod Formation (depending on what stratigraphic scheme you follow!).

2 Zohar disconformityThe top few meters of the Zohar Formation are a series of argillaceous limestones with numerous trace fossils (Planolites and Thalassinoides, mainly) and this gorgeous erosion surface (disconformity). The white limestone beneath was lithified when it was exposed and downcut by sand-bearing currents. On the left you can see pieces of the limestone incorporated into the overlying calcareous sandstone. Classic.

3 Goldberg trench 031516We then moved up section into the Kidod Formation (or upper Zohar!) to the site of the first stratigraphic column constructed through these rocks. Right of center you can see a trench dug into the marls by Moshe Goldberg in 1962. This was part of his project to describe the entire Jurassic section in Makhtesh Gadol. We still use his iconic work today as “Goldberg, 1963”.

4 Quadrat start 031516Here are the Yaels starting the very first quadrat measurements within the Matmor Formation. Within a half-meter square they are counting and identifying all the fossils — every little bit over a few millimeters. Student Yael has many of these quadrats in her future!

5 Makhtesh view 031516Here is a view of the Makhtesh with the Yaels at work. You can see our white field vehicle from the Geological Survey in the middle distance.

6 Matmor bedding plane 031516We ended the day at this bedding plane in the upper Matmor Formation I remembered finding many years ago. It has spectacular clam and gastropod fossils across its surface, many in apparent life positions. I’d show you images of the critters, but I’m saving them for a Fossil of the Week post!

 

Return to Makhtesh Gadol … and introducing the Yaels

March 14th, 2016

1 Yaels Makhtesh view 031416MITZPE RAMON, ISRAEL–Today I went to one of my favorite geological places: Makhtesh Gadol in the northern Negev highlands of Israel. It was a special day as well because I worked there with two excellent geologists: Yael Edelman-Furstenberg of the Geological Survey of Israel, and Yael Leshno, a graduate student at Hebrew University beginning a project comparing the Middle Jurassic communities in the south of Israel with their temporal equivalents in the north. Yael E-F is one of Student Yael’s advisors; I am on her dissertation committee. The two Yaels are shown above in the Matmor Hills of Makhtesh Gadol sorting out the complicated stratigraphy.

2 Yaels at 055 031416Yael Edelman-Furstenberg is on the left and Yael Leshno is on the right (along with my intruding shadow). We are standing at GPS location 055, where fossils from Subunit 51 of the Matmor Formation are abundant. Student Yael is presently surveying the Middle Jurassic sections in Makhtesh Gadol to find suitable places to do stratigraphic fossil collecting and quadrat measurements.

3 Oolite unit bedding planeWe spent some time studying “the oolite unit” (Subunit 63) at the top of the original Goldberg (1963) stratigraphic section. It is, as Goldberg wrote on his column, a “characteristic guide horizon”. It’s curious because there are no other oolitic units in the Matmor Formation, and because it loses its oolitic nature a few hundred meters south and north of the section. I will make a thin-section of this rock and see what’s up with these ooids.

4 Oolite unit weatheringText

5 Jeffs PerchThe top of the triangular cliff has an exposure of a fossiliferous marl of the Matmor Formation. In 2005, Jeff Bowen (’06) perched up there for hours and collected tiny specimens.

6 Jeffs viewThis would have been Jeff’s view of the makhtesh as the sun began to set. I hope he appreciated it!

7 Sponge embedment MatmorFinally, here is a bathroom counter (the best light in my hotel room) image of a calcareous sponge I found in Subunit 60 (just below Jeff’s location above) with embedment structures (bioclaustrations). Some worm-like organisms lived within the sponge body, and the sponge grew skeleton around them. I’ve not seen these before in sponges.

Wooster Geologist Returns to Israel: A visit to the Cretaceous Ora Formation

March 13th, 2016

1 Ora at GerofitMITZPE RAMON, ISRAEL — This is my 14th visit to Israel. I’ll be spending ten days here doing fieldwork in places I’ve come to love: Makhtesh Ramon, Makhtesh Gadol, and the Aravah Valley. I’ve returned to complete some Jurassic studies, explore a bit of the Cretaceous, and collect specimens for future Independent Study projects by Wooster geology majors. I’ve also come to work with an excellent Israeli graduate student, Yael Leshno. I’ll introduce her and her project later in this blog.

The top image is of my first field site of the trip: an exposure of the Ora Formation (Upper Cretaceous, Turonian) at Gerofit Junction at the edge of the Aravah Valley in southern Israel. It is a fun location because you can eat lunch while gazing at mountains and valleys in nearby Jordan. Of course, since it is the junction of routes 40 and 90, it’s a noisy place. The Ora Formation is well exposed north of the road junction.

2 Ora Gerofit faultThis outcrop is significantly faulted, so you must pay close attention to the stratigraphy to work your way through it. This is a low-angle normal fault. Note that it does not cut the topmost units. All sorts of tectonic situations are possible here next to the Dead Sea Transform system. Dr. Judge would love these structures! Me, not so much.

3 Ora limestone 031316Parts of the Ora Formation are very fossiliferous. This is a platy limestone rich in small oysters. Other beds have zillions of tiny gastropods, still others with plant and terrestrial arthropod remains. I came here ot find bryozoans, but found only a single specimen encrusting an oyster.

4 Mishhash view 031316On the way back to Mitzpe Ramon, I stopped at another exposure of the Ora Formation just south of Makhtesh Ramon. It is a place very familiar to several Wooster students, especially Andrew Retzler and Micah Risacher who did much of their I.S. field research on those steep slopes ahead. We often stopped to look at the Ora exposed in the wadis. The view is a bit hazy because of the typical Saharan dust that moves into the Negev in the spring.

5 Ora hardground MRThere is a fantastic bivalve-bored carbonate hardground in the Ora Formation at this second locality. It is especially well exposed now, probably because of winter floods washing away the soft sediment covering it.

6 Ora oysters 031316One amazing bed, about a half-meter thick, is packed with thin-shelled oysters. Every time I visit I look for encrusting bryozoans here, but none have appeared. They’ve got to be there!

It was a good start for these few days of fieldwork. I’m now acclimated, my geological eyes are tuned, and I’m ready for tomorrow’s fieldwork in the Matmor Formation of Makhtesh Gadol — the main event!

Wooster’s Fossil of the Week: A barnacle and sponge symbiosis from the Middle Jurassic of Israel

July 4th, 2014

Barnacle boring bioclaustration 1

[Programing note: Wooster’s Fossil of the Week is now being released on Fridays to correspond with the popular Fossil Friday on Twitter and other platforms.]

This week’s fossil is again from the Matmor Formation (Middle Jurassic, Callovian) of southern Israel. (What can I say? We have a lot of them!) We are looking above at a crinoid pluricolumnal (a section of the stem made of several columnals) almost completely encrusted by a calcareous sponge (the sheet-like form with tiny pores). A round oyster is attached to the sponge in the lower center. In the left half you see the items of our interest this week: ovoid holes produced by barnacles. This specimen was studied by Lizzie Reinthal (’14) as part of her Senior Independent Study on the taphonomy of the Matmor crinoids.
Barnacle boring bioclaustration 2These barnacle holes are interesting because we can see in this closer view that the sponge grew around them. There is thickened sponge wall at the margins of the holes, and the feature in the middle is a thick mound built around one of these holes. The barnacles in the holes and the sponge were living together. If they weren’t either the sponge would have overgrown the empty holes or the barnacle would have cut through the dead sponge skeleton. This is an example of symbiosis. It would be a facultative relationship because the sponge and barnacle did not need each other to survive; each does just fine without the other. It could be considered parasitic if the barnacles acquired nutrients the sponge would have ordinarily received, or vice versa.
Barnacle boring bioclaustration 3This third view is of the edge of the sponge skeleton as it partially overlaps the barnacle holes. Now we see the nature of the intergrowth. The barnacle holes are actually borings into the crinoid pluricolumnal below. They are the trace fossil called Rogerella, which we have seen before in this blog. The sponge grew along the crinoid substrate covering all sorts of small holes, cracks and crevices, but when it reached these borings living barnacles were still in them filter-feeding away with their filamentous legs. The sponge thus laid its skeleton right up to the hole edges, eventually surrounding them with their spongy matrix.

The holes are borings, a kind of trace fossil. The structure created when the sponge surrounds a living boring barnacle like this is more difficult to name. It is not technically a bioimmuration (see Taylor, 1990) because the barnacles were not passively subsumed within the sponge skeleton. It may be a bioclaustration (Palmer and Wilson, 1988) because the sponge adapted its skeleton to isolate and surround the barnacle. I think we can at least say these are trace fossils in the ethological (behavioral) group called Impedichnia (Tapanila, 2005) because the barnacles acted as impediments, or limiting factors, to the growth of the sponge.

I love these examples of symbiosis in the fossil record, and the interesting debates about their interpretations.

References:

Cónsole‐Gonella, C. and Marquillas, R.A. 2014. Bioclaustration trace fossils in epeiric shallow marine stromatolites: the Cretaceous‐Palaeogene Yacoraite Formation, northwestern Argentina. Lethaia 47: 107-119.

Palmer, T.J. and Wilson, M.A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31: 939–949.

Tapanila, L. 2005. Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: Trace fossil evidence. Lethaia 38: 89–99.

Taylor, P.D. 1990. Preservation of soft-bodied and other organisms by bioimmuration: A review. Palaeontology 33: 1–17.

Vinn, O. and Mõtus, M.A. 2014. Symbiotic worms in biostromal stromatoporoids from the Ludfordian (Late Silurian) of Saaremaa, Estonia. GFF (in press).

Wilson, M.A., Palmer, T.J. and Taylor, P.D. 1994. Earliest preservation of soft-bodied fossils by epibiont bioimmuration: Upper Ordovician of Kentucky. Lethaia 27: 269–270.

Wooster’s Fossil of the Week: A geopetal structure in a boring from the Middle Jurassic of Israel

June 15th, 2014

Geopetal Structure 585We have a very simple trace and body fossil combination this week that provides a stratigraphic and structural geologic tool. Above is a bit of scleractinian coral from the Matmor Formation (Middle Jurassic, Callovian) of Makhtesh Gadol in southern Israel. The coral skeleton was originally made of aragonite. It has been since recrystallized into a coarse sparry calcite, so we can no longer see the internal skeletal details of the coral. In the middle of this polished cross-section is an elliptical hole. This is a boring made by a bivalve (the trace fossil Gastrochaenolites). Inside the boring you see a separate elliptical object: a cross-section of a bivalve shell. This could be the bivalve that made the boring or, more likely, a bivalve that later occupied the boring for a living refuge. This, then, is the trace fossil (Gastrochaenolites) and body fossil (the bivalve shell) juxtaposition.

That stratigraphic and structural interest is that the boring and the bivalve shell are partially filled with a yellow sediment. This sediment has gravitationally settled to the bottom of these cavities (at slightly different levels). These holes have thus acted as natural builders’ levels showing is which way was down and which was up at the time of deposition. We can tell without any clues from the recrystallized coral the “way up” before any later structural deformation (or in this case rolling around on the outcrop) changed the orientation of the coral. Pretty cool and simple, eh? The name for this feature is a geopetal structure. There are some faulted and folded sedimentary rock exposures in the world where we search diligently for these little clues to original orientation (see, for example, Klompmaker et al., 2013). Not all geopetal structures have fossil origins (i.e., Mozhen et al., 2010), but most do. A little gift from paleontology to its sister disciplines.

References:

Klompmaker, A.A., Ortiz, J.D. and Wells, N.A. 2013. How to explain a decapod crustacean diversity hotspot in a mid-Cretaceous coral reef. Palaeogeography, Palaeoclimatology, Palaeoecology 374: 256-273.
Mozhen, G., Chuanjiang, W., Guohui, Y., Xueqiang, S., Guohua, Z. and Xin, W. 2010. Features, origin and geological significance of geopetal structures in Carboniferous volcanic rocks in Niudong Block, Santanghu Basin. Marine Origin Petroleum Geology 3: 15.
Wieczorek, J. 1979. Geopetal structures as indicators of top and bottom. Annales de la Societé géologique de Pologne 49: 215-221.

Wooster’s Fossil of the Week: A fragment of an asteroid (the sea star kind) from the Upper Cretaceous of Israel

June 8th, 2014

zichor asteroid aboral 585This is not an important fossil — there is not enough preserved to put a name on it beyond Family Goniasteridae Forbes, 1841 (thanks, Dan Blake) — but it was a fun one to find. It also photographs well. This is a ray fragment of an asteroid (from the group commonly known as the sea stars or starfish) I picked up from the top meter of the Zichor Formation (Coniacian, Upper Cretaceous) in southern Israel (Locality C/W-051) on my field trip there in April 2014. We are looking at the aboral (or top) surface; below is the oral view.
zichor asteroid oral surface 585In this oral perspective you can see a group of tiny, jumbled plates running down the center. This is the ambulacrum, which in life had a row of tube feet extending out for locomotion and grasping prey.
asteroid 2004Above is a sea star held by my son Ted on Long Island, The Bahamas, back in 2004. You can see a bit of resemblance between this modern species and the Cretaceous fossil, mainly the  large knobby ossicles running down the periphery of the rays.

The asteroids have a poor fossil record, at least when compared to other echinoderms like crinoids and echinoids. It appears that all post-Paleozoic asteroids derive from a single ancestral group that squeaked through the Permian extinctions (Gale, 2013). There is a significant debate about the evolution of the asteroids (see Blake and Mah, 2014, for the latest). Unfortunately our little critter is not going to help much in its resolution.

Recently it has been discovered that some living asteroids have microlenses in their ossicles to provide a kind of all-surface photoreception ability. Gorzelak et al. (2014) have found evidence that some Cretaceous asteroids had similar photoreceptors. Maybe our fossil goniasterid fragment could yield this kind of secret property with closer examination.

References:

Blake, D.B. and Mah, C.L. 2014. Comments on “The phylogeny of post-Palaeozoic Asteroidea (Neoasteroidea, Echinodermata)” by AS Gale and perspectives on the systematics of the Asteroidea. Zootaxa 3779: 177-194.

Gale, A.S. 2011. The phylogeny of post-Paleozoic Asteroidea (Neoasteroidea, Echinodermata). Special Papers in Palaeontology 38, 112 pp.

Gale, A.S. 2013. Phylogeny of the Asteroidea, p. 3-14. In: Lawrence, J.M. (ed.), Starfish: Biology and Ecology of the Asteroidea. The Johns Hopkins University Press, Baltimore.

Gorzelak, P., Salamon, M.A., Lach, R., Loba, M. and Ferré, B. 2014. Microlens arrays in the complex visual system of Cretaceous echinoderms. Nature Communications 5, Article 3576, doi:10.1038/ncomms4576.

Loriol, P. de. 1908. Note sur quelques stellérides du Santonien d’Abou-Roach. Bulletin de l’Institut égyptien 2: 169-184.

Mah, C.L. and Blake, D.B. 2012. Global diversity and phylogeny of the Asteroidea (Echinodermata). PLOS ONE 7(4), e35644.

Wooster’s Fossil of the Week: One sick crinoid from the Middle Jurassic of Israel

May 11th, 2014

IsocrinidAMy first thought on seeing this distorted fossil was how much it evoked one of those Palaeolithic “Venus figurines“. It is certainly difficult to deduce that this is actually a crinoid column (or stem). It was found during my last expedition to the Middle Jurassic Matmor Formation in Makhtesh Gadol, southern Israel (location C/W-506). This particular crinoid was infected by parasites that caused the grotesque swellings of the skeletal calcite in the individual columnals (button-like sections of the column). The infection of a species of Apiocrinites in the Matmor is the subject of a paper now in press by me, Lizzie Reinthal (’14) and the pride of Ohio State University, Dr. Bill Ausich. That story will be a later Fossil of the Week entry. The specimen above, though, is different. To my surprise, it is a parasitic infection in an entirely different crinoid order.

IsocrinidBHere’s another view of the crinoid column. The top third shows some of the original star-shaped columnals in side view. This tells us that the crinoid was an isocrinid, possibly the cosmopolitan Isocrinus nicoleti. This group contains the famous and somewhat creepy crawling crinoids. We have just a handful of isocrinid stem fragments in the Matmor despite a decade of searching for a distinctive calyx (the head of the little beast). Note that the gall-like swellings have holes in them. This will be important in a later analysis of the parasitic system here.

IsocrinidCAnd now the other side of the fossil. Again, in the top part you can make out star-shaped columnals, but that distinctive outline is lost in the swollen column below. The stem must have been seriously hindered from flexing and bending with such a debilitating infection.

References:

Salamon, M.A. 2008. The Callovian (Middle Jurassic) crinoids from northern Lithuania. Paläontologische Zeitschrift 82: 269-278.

Tang, C.M., Bottjer, D.J. and Simms, M.J. 2000. Stalked crinoids from a Jurassic tidal deposit in western North America. Lethaia 33: 46-54.

Wilson, M.A., Reinthal, E.A. and Ausich, W.I. 2014. Parasitism of a new apiocrinitid crinoid species from the Middle Jurassic (Callovian) of southern Israel. Journal of Paleontology (in press).

Last work of Team Israel, Matmor Division

May 5th, 2014

Team Israel 050514WOOSTER, OHIO–Steph Bosch (’14) and Lizzie Reinthal (’14) volunteered to examine the Matmor Formation fossils I collected last month in Israel. Each fossil, most of which are crinoid ossicles, must be scanned under a microscope for tiny encrusters (especially bryozoans), borings, and bite marks. In the image above you can see the collection bags on the left and our three ‘scopes arranged so that we can exchange interesting bits that we find. I had planned to do this work all by my lonesome, and it would have taken a full day. With Steph and Lizzie, though, we were done in an hour and a half. No wonder — they’ve spent the last year doing this kind of analysis!

Israel specimens 050514And here are the results. Each paper tray has a particular category of fossil from a specific location. We found many little (and I mean little) treasures that my future students and I can now study. I’m grateful for the expert help.

Team Israel 2013 will be graduated a week from today. Congratulations to them!

Wooster’s Fossil of the Week: A helpful echinoid from the Upper Cretaceous of Israel

April 27th, 2014

Echinoids a 042214These beaten-up fossils have served me well in the field this month. They are the regular echinoid Heterodiadema lybicum (Agassiz & Desor, 1846). They are common in the Cenomanian throughout northern Africa and the Middle East. These particular specimens, the other sides of which are shown below, are from the En Yorqe’am Formation we’ve been studying here on the rim of Makhtesh Ramon, southern Israel. When I find them in abundance I know I’m in the top half of that formation. They’ve previously been featured indirectly as a Fossil of the Week for the bites they made into the shells of oysters, producing the trace fossil Gnathichnus.
Echinoids b 042214The species Heterodiadema lybicum was named by Pierre Jean Édouard Desor (1811-1882) in 1846. We’ll meet him in a later entry. The genus Heterodiadema was erected in 1862 by Gustave Honoré Cotteau (1818-1894), who is pictured below. There is not much at all about Cotteau in the English literature, but with Google Translate I was able to sort out a bit of his story from the French. He was one of those glorious amateurs who make such important contributions to the science of paleontology. (I like the new term “citizen scientists” for this group, although I emphasize I’m a citizen too!) Cotteau was a judge in Auxerre, Burgundy, France. In his spare time he had a passion for living and fossil echinoids, eventually amassing a collection of over 500 species. He was also, as you might guess, a volunteer curator of the city museum in Auxerre. In 1889 he was President of the Société zoologique de France, a highly prestigious position. He was an important force in the early understanding of echinoderms.
Cotteau GustaveAgain, these specimen photos were taken under “field conditions” in Israel with a cleaner’s cloth for a background. As you read this, though, I am with luck back in my cozy home in Wooster.

References:

Agassiz, L. and Desor, P.J.E. 1846. Catalogue raisonné des familles, des genres, et des espèces de la classe des échinodermes. Annales des Sciences Naturelles, Troisième Série, Zoologie 6: 305-374.

Geys, J.F. 1980. Heterodiadema libycum (Agassiz & Desor, 1846), a hemicidaroid echinoid from the Campanian of Belgium.  Anales de la Societe geologique du Nord 99: 449-451.

Smith, A.B., Simmons, M.D. and Racey, A. 1990. Cenomanian echinoids, larger foraminifera and calcareous algae from the Natih Formation, central Oman Mountains. Cretaceous Research 11: 29-69.

Among citizen scientists in southern Israel

April 24th, 2014

Zichor M2 M3 042414MITZPE RAMON, ISRAEL–Today Yoav Avni and I drove south to meet an enthusiastic group of naturalists in Arava of the Jordan Rift Valley. The group is led by Dr. Hanan Ginat and consisted of a micropaleontologist and three amateur collectors who have all added considerably to scientific knowledge. We did fieldwork together in the magnificent Menuha Formation (Upper Cretaceous). The outcrop above is the boundary between a middle unit of the Menuha (“M-2”) and the upper chalks (“M-3”) in Wadi Zichor.

Gidon and fossils 042414Here is Gidon and a fraction of his collection, which is mostly from the local Cretaceous. There were fossil types here I’ve never seen before. Like all good citizen scientists, he knows how to collect and observe with location and stratigraphic control, and he has learned an immense amount about fossils and the organisms they represent.

Winny home 042414We had tea in Winny’s desert house. The interior (and exterior) is dominated by delightful fossils (and many other objects). It is a classic desert-dweller’s home. The micropaleontologist Sarit is in the foreground. (I have only phonetic first names. I’ll collect last names later!)

Stratodus Winny 042414Winny collected this four-meter long Cretaceous fish named Stratodus. She must now be the world’s expert on its complex anatomy. It is just a taste of her other fossils, including a bryozoan-encrusted ammonite from the Ora Formation (Turonian) she freely and eagerly gave me for research.

Field party 042414The field party is here assembled to study a site where they helped find and excavate an Elasmosaurus plesiosaur — the first in Israel.

Menuha view 042414A view of the Menuha Formation in the Arava. This is an extraordinary outcrop, and you can tell by the minimal vegetation that this is the driest part of the Negev.

I very much enjoyed my time with this fun and dedicated crew. They reminded me so much of the naturalists I grew up with in my own desert home of Barstow, California. I made many connections here that will benefit future research programs and Independent Study projects for Wooster students. It was inspiring to see what joy these people have in pursuing their scientific passions, like all other citizen scientists I work with.

This was my last day of fieldwork on this expedition. Tomorrow the long trip home begins!

« Prev - Next »