Wooster’s Fossil of the Week: A Middle Jurassic trace fossil from southwestern Utah

November 10th, 2017

1 Gyrochorte 2 CarmelTime for a trace fossil! This is one of my favorite ichnogenera (the trace fossil equivalent of a biological genus). It is Gyrochorte Heer, 1865, from the Middle Jurassic (Bathonian) Carmel Formation of southwestern Utah (near Gunlock; locality C/W-142). It was collected on an Independent Study field trip a long, long time ago with Steve Smail. We are looking at a convex epirelief, meaning the trace is convex to our view (positive) on the top bedding plane. This is how Gyrochorte is usually recognized.
2 Gyroxhorte hyporelief 585A quick confirmation that we are looking at Gyrochorte is provided by turning the specimen over and looking at the bottom of the bed, the hyporelief. We see above a simple double track in concave (negative) hyporelief. Gyrochorte typically penetrates deep in the sediment, generating a trace that penetrates through several layers.
3 Gyrochorte Carmel 040515Gyrochorte is bilobed (two rows of impressions). When the burrowing animal took a hard turn, as above, the impressions separate and show feathery distal ends.
4 Gyrochorte 585Gyrochorte traces can become complex intertwined, and their detailed features can change along the same trace.
5 Gibert Benner fig 1This is a model of Gyrochorte presented by Gibert and Benner (2002, fig. 1). A is a three-dimensional view of the trace, with the top of the bed at the top; B is the morphology of an individual layer; C is the typical preservation of Gyrochorte.

Our Gyrochorte is common in the oobiosparites and grainstones of the Carmel Formation (mostly in Member D). The paleoenvironment here appears to have been shallow ramp shoal and lagoonal. Other trace fossils in these units include Nereites, Asteriacites, Chondrites, Palaeophycus, Monocraterion and Teichichnus. (I also ran into Gyrochorte in the beautiful Triassic of southern Israel.)

So what kind of animal produced Gyrochorte? There is no simple answer. The animal burrowed obliquely in a series of small steps. Most researchers attribute this to a deposit-feeder searching through sediments rather poor in organic material. It may have been some kind of annelid worm (always the easiest answer!) or an amphipod-like arthropod. There is no trace like it being produced today.

We have renewed interest in Gyrochorte because a team of Wooster Geologists is going to southern Utah this summer to work in these wonderful Jurassic sections.
6 Heer from ScienceOswald Heer (1809-1883) named Gyrochorte in 1865. He was a Swiss naturalist with very diverse interests, from insects to plants to the developing science of trace fossils. Heer was a very productive professor of botany at the University of Zürich. In paleobotany alone he described over 1600 new species. One of his contributions was the observation that the Arctic was not always as cold as it is now and was likely an evolutionary center for the radiation of many European organisms.

References:

Gibert, J.M. de and Benner, J.S. 2002. The trace fossil Gyrochorte: ethology and paleoecology. Revista Espanola de paleontologia 17: 1-12.

Heer, O. 1864-1865. Die Urwelt der Schweiz. 1st edition, Zurich. 622 pp.

Heinberg, C. 1973. The internal structure of the trace fossils Gyrochorte and Curvolithus. Lethaia 6: 227-238.

Karaszewski, W. 1974. Rhizocorallium, Gyrochorte and other trace fossils from the Middle Jurassic of the Inowlódz Region, Middle Poland. Bulletin of the Polish Academy of Sciences 21: 199-204.

Sprinkel, D.A., Doelling, H.H., Kowallis, B.J., Waanders, G., and Kuehne, P.A., 2011, Early results of a study of Middle Jurassic strata in the Sevier fold and thrust belt, Utah, in Sprinkel, D.A., Yonkee, W.A., and Chidsey, T.C., Jr. eds., Sevier thrust belt: Northern and central Utah and adjacent areas, Utah Geological Association 40: 151–172.

Tang, C.M., and Bottjer, D.J., 1996, Long-term faunal stasis without evolutionary coordination: Jurassic benthic marine paleocommunities, Western Interior, United States: Geology 24: 815–818.

Wilson. M.A. 1997. Trace fossils, hardgrounds and ostreoliths in the Carmel Formation (Middle Jurassic) of southwestern Utah. In: Link, P.K. and Kowallis, B.J. (eds.), Mesozoic to Recent Geology of Utah. Brigham Young University Geology Studies 42, part II, p. 6-9.

[An earlier version of this article was posted on April 17, 2015.]

Wooster’s Fossils of the Week: The tiniest of brachiopods (Middle Jurassic of Utah)

November 3rd, 2017

While preparing for this summer’s expedition to the Middle Jurassic of southwestern Utah, I found this specimen in our collection from the 1990s. You may be able to just make out the wedge-shaped outline of a mytilid-like bivalve with several cup-like oysters (Liostrea strigilecula of oyster reef and oyster ball fame) encrusting the shell exterior. This specimen, labeled EM-1, is from our Eagle Mountain exposure of Member D, Carmel Formation, near Gunlock, Utah.

If you look very closely near the middle of the clam, you will see some super-small encrusting shells the size of sand grains. Two are shown above, photographed with all the extension tubes on my camera. Believe it or not, these are shells of thecideide brachiopods, among the smallest known. They are, as far as I can tell, the only brachiopods thus far recorded from the Carmel Formation. They are abundant in this unit, encrusting carbonate hardgrounds as well as shells.

We know who these minuscule critters are from the careful analysis of their interiors by my colleague Peter Baker at the University of Derby. They are, in fact, the first thecideide brachiopods to be described from the Jurassic of North America. We published a description of them in 1999, naming them as the new genus and species Stentorina sagittata. The etymology of the genus name: “From the Greek Stentor (herald, of the Trojan War) in recognition of the first discovery of thecideoid brachiopods in the Jurassic of North America.” How’s that for classical drama about an itty-bitty brachiopod? We said of the new species name: “From the way the edges of the hemispondylium converge on the median ridge to form a characteristic arrowhead-shaped structure on the floor of the ventral valve.” Sagittate means arrowhead-shaped.

I’m looking forward to more paleontological treasures from the Carmel Formation of southern Utah.

References:

Baker, P G. and Wilson, M A. 1999. The first thecideide brachiopod from the Jurassic of North America. Palaeontology 42: 887-895.

Carlson, S.J. 2016. The evolution of Brachiopoda. Annual Review of Earth and Planetary Sciences 44: 409-438.

Wooster’s Fossils of the Week: An oyster reef from the Middle Jurassic of southwestern Utah

September 29th, 2017

It was a pleasure to pull this massive specimen out of the cabinets, where it had been sitting for more than 20 years. It is a small reef of the oyster Liostrea strigilecula (White, 1877) from the Carmel Formation (Middle Jurassic) near Gunlock, southwestern Utah. It is out of storage because I’m returning to this section in Utah with students this summer to begin fieldwork again. The rocks and fossils are fascinating, and it is time someone looked seriously at them again.

A closer look at these little oysters shows how they could construct such a tight, nearly seamless structure. Each oyster grew in a cup-like fashion (first pointed out by Tim Palmer) so that they nestled together rather than overgrowing each other. These same oysters in this same locality also formed the famous oyster balls (ostreoliths). These reefal equivalents grew on carbonate hardgrounds, which are abundant in the Carmel Formation.

Liostrea strigilecula was named by Charles Abiathar White (1826-1910) as Ostrea strigilecula in 1877. White was an American paleontologist and geologist who did considerable work on midwestern and western North America. He was born in Massachusetts and worked in Iowa as the state geologist from 1866 to 1870. He returned east to teach at Bowdoin College for a couple of years, and then he joined the United States Geological Survey from 1874 into 1892. In 1895 he became an associate in paleontology at the United States National Museum. White was one of the first fellows of the American Association for the Advancement of Science, one of the first members of the Geological Society of America, and he was elected a member of the National Academy of Sciences in 1889. Abiathar Peak in Yellowstone National Park was named after him. A more thorough biography can be found at the link.

I’m looking forward to seeing these beautiful oysters in the field again!

References:

Bennett, K. 2017. White, Charles Abiathar. The Biographical Dictionary of Iowa. University of Iowa Press, 2009. Web. 19 September 2017

Nielson, D.R. 1990. Stratigraphy and sedimentology of the Middle Jurassic Carmel Formation in the Gunlock area, Washington County, Utah. Brigham Young University Geology Studies 36: 153-192.

Taylor, P.D. and Wilson, M.A. 1999. Middle Jurassic bryozoans from the Carmel Formation of southwestern Utah. Journal of Paleontology 73: 816–830.

Wilson, M.A. 1998. Succession in a Jurassic marine cavity community and the evolution of cryptic marine faunas. Geology 26: 379–381.

Wilson, M.A. 1997. Trace fossils, hardgrounds and ostreoliths in the Carmel Formation (Middle Jurassic) of southwestern Utah, in Link, P. and Kowallis, B., eds., Mesozoic to recent geology of Utah, Brigham Young University, v. 42, p. 6–9.

Wilson, M.A., Ozanne, C.R. and Palmer, T.J. 1998. Origin and paleoecology of free-rolling oyster accumulations (ostreoliths) in the Middle Jurassic of southwestern Utah, USA. Palaios 13: 70–78.

Wooster’s Fossils of the Week: Belemnites (Jurassic of Wyoming)

May 12th, 2017

This week’s fossils are among the most recognizable. They certainly are popular in my paleontology courses because no one has ever misidentified one. Belemnites (from the Greek belemnon, meaning javelin or dart) were squid-like cephalopods that lived in the Jurassic and Cretaceous Periods. You would never guess their original appearance from the fossils above. These are guards or rostra, internal hard parts that look nothing like the external animal. They are often found in large accumulations called “belemnite battlefields” (Doyle and MacDonald, 1993).
The above image shows a remarkable fossil belemnite in the State Museum of Natural History, Stuttgart, Germany (courtesy of User Rai’ke on Wikimedia). It shows their squidy form and ten equal-sized arms studded with little hooks for holding prey. They probably ate small fish and invertebrates.
The guard or rostrum is solid calcite at its distal end with a phragmocone (chambered shell) at the other. This phragmocone is only rarely preserved. The rostrum above is from the Zohar Formation (Jurassic) of the Golan in northern Israel near Neve Atif.

Belemnites have played an important role recently in sorting out Mesozoic climate change. Their solid calcitic rostra are ideal for examining stable isotopes that fluctuated with water temperature. Dera et al. (2011) showed that the Jurassic had significant climate variations based on the isotopes in belemnite fossils.

Belemnites have a long history in folklore. The English called them “thunderbolts” because they thought they were formed by lightning strikes. The Scottish knew them as “botstones” that cured horses of various ailments. The Swedish thought they were “gnome candles”. The Chinese called them “sword stones”. Much more prosaically, the belemnite is the state fossil of Delaware.
An engraving of belemnite rostra by Captain Thomas Brown (1889).

References:

Brown, Captain T. 1889. An atlas of fossil conchology of Great Britain and Ireland. With descriptions of all the species. Swan Sonnenschein & Co.

Dera, G., Brigaud, B., Monna, F., Laffont, R., Pucéat, E., Deconinck, J-F., Pellenard, P., Joachimski, M.M., and Durlet, C. 2011. Climatic ups and downs in a disturbed Jurassic world. Geology 39: 215–218.

Doyle, P. and MacDonald, D.I.M. 1993. Belemnite battlefields. Lethaia 26: 65-80.

[Originally published on November 20, 2011.]

Wooster’s Fossils of the Week: Geological Magic Lantern Slides from the 19th Century (Part I)

November 25th, 2016

1-teleosaurus-ichthyosaurus-pentacrinites-ammonites-gryphaea“Wooster’s Fossil of the Week” is not always about actual fossils, but our topics are each paleontological. Many years ago I discovered in an old box tucked away in the attic of Scovel Hall at Wooster a set of “Magic Lantern Slides” used in geology courses. I came across them again recently and thought I would share these ancient scenes. Lantern slides were the 19th Century equivalent of PowerPoint, so generations of Wooster geology students must have sat in rapture looking at these colorful images. (At least that’s how I imagine them now viewing my PowerPoint slides!) The above imagined seashore view includes the crocodylian Teleosaurus atop the layered rocks, Ichthyosaurus immediately below, four long-necked Plesiosaurus on the left, an orange cluster of the crinoid Pentacrinus rooted inexplicably in the beach sand, and a scattering of ammonite and oyster shells.  The caption on the image says these animals lived during “the Secondary Epoch of the Earth’s history”. We would now say this is a Jurassic scene. The ichthyosaur looks the most odd to us. Not only is it crawling on the land, it lacks a dorsal fin and the characteristic bi-lobed, shark-like tail. These were later discoveries about ichthyosaurs made only after specimens were found with skin impressions.

2-ammonite-lantern-detailThis close-up shows the detail in these images. Ammonites are on the left (“6”) and the oyster Gryphaea is on the right (“7”).

3a-magic-lantern-slide-geological-585The Magic Lantern Slides are 4×8 inches with the image on glass fixed in a thin slab of wood with metal rings. These are chromolithograph slides, each stamped “T.H. McAllister, Optician, N.Y.”. McAllister was the most prominent of many American producers of lantern slides in the late 19th century.

4-megalosaurus-pterodactyleThe quadrupedal beasts in the foreground are the of the Jurassic theropod dinosaur Megalosaurus, with pterodactyls in the background. We now know Megalosaurus was bipedal, like all theropod dinosaurs.

5-megalosaurus-headAnother detail showing the fine quality of these color images on glass.

6-gigantic-lizards-and-some-pterosauria-by-benjamin-waterhouse-hawkins-1853Most readers with any background in the history of paleontology recognize these reconstructions of ancient life from the work of Benjamin Waterhouse Hawkins (1807-1894). In 1855, Waterhouse Hawkins finished sculpting life-sized models of these extinct animals, along with many others, for the Crystal Palace gardens in London. He was advised for the anatomical details by Sir Richard Owen (1804-1892), a hero of paleontology but not a fan of Darwinian evolution. He is responsible for the dinosaurs of Waterhouse Hawkins looking rather mammalian. Most of these extraordinary animal statues still exist.

9-benjamin_waterhouse_hawkins-_photograph_by_maull__polyblankBenjamin Waterhouse Hawkins (1807-1894). More reconstructions from him, along with his brief biography, in the next installment.

 

Wooster’s Fossils of the Week: Mystery fossil solution — an oyster from the Middle Jurassic of southern England

August 30th, 2016

Mystery fossils 081916 585Last week I gave my students in Wooster’s Invertebrate Paleontology course a fossil to identify (shown above), using any techniques they want. This was their first task in the course, so it was difficult for most of them. I hope it was a good introduction to practical paleontology and the mysteries of taxonomy. One student, Josh Charlton, nailed it all the way to the species. Several other students got close.

These are Middle Jurassic oysters properly identified as Praeexogyra hebridica (Forbes, 1851). I collected them many years ago from the Frome Clay (Bathonian) at Langton Herring along the coast of Dorset, southern England. They are extremely common fossils there, crunching underfoot as they erode out into the surf. These oysters lived in estuaries, where there was a mix of fresh and marine waters. In 1976, John Hudson and our friend Tim Palmer sorted out the systematics and  evolution of this oyster species, moving it from Ostrea and Liostrea to the genus Praeexogyra.
Forbes diagramThis oyster species was originally described in 1851 as Ostrea hebridica by Edward Forbes (1815-1854) from Jurassic sediments on the Scottish Isle of Skye in the Inner Hebrides (hence the name). As was typical of many nineteenth century fossil descriptions, the illustrations (above) and diagnoses are not particularly helpful. Forbes (1851) wrote, “Being very familiar with the oysters of the Wealden and Purbeck I cannot admit this identification, nor can I refer the Loch Staffin shell to any known fossil, although, as usual in this variable genus, it is difficult to express in words its marked distinctions.” We wouldn’t get away with such a conclusion for a new species today, but to be fair, oysters are notoriously difficult to describe. Forbes knew that this species “inhabited brackish water” in the Jurassic.

Forbes bust to useEdward Forbes FRS, FGS (above) was born on the Isle of Man in 1815, the year of Waterloo. He was, as they said then, a sickly child unable to attend a regular school for long. He traveled to London when he was 16, though, to study art. That didn’t work out, so he became a medical student at the University of Edinburgh. Forbes was intrigued more with natural history than medicine (a common story!), so he dropped his medical plans and set out to become a naturalist skilled in paleontology, mineralogy, zoology, anatomy and botany. His younger brother David became a well-known mineralogist. Edward Forbes caught on quickly. In 1838 he published a summary of the mollusks found on the Isle of Man. He was 23 years old. Forbes traveled widely, accumulating more observations, experiences and colleagues. He had many publications and advocated numerous hypotheses about the distribution of life forms. Some had lasting value (like the distribution of flora before and after glaciation intervals) and others were a bit naive (such as his idea that there is no marine life below 300 fathoms). He was a president of the Geological Society of London (1853), and in 1854 became the Professor of Natural History at Edinburgh, his driving ambition. Unfortunately his health problems caught up with him and he died that year at age 39.

Edward Forbes played a critical role in the history of science by being a mentor of Thomas Henry Huxley. Forbes advised Huxley as a young man and helped him publish his earliest works. Forbes introduced Huxley to his circle of colleagues, which eventually led to the latter’s election to the Royal Society while only 26 years old. Huxley wrote a touching obituary for his young friend Edward Forbes.

References:

Anderson, F.W. and Cox, L.R. 1948. The “Loch Staffin Beds” of Skye; with notes on the molluscan fauna of the Great Estuarine Series. Proceedings of the Royal Physical Society of Edinburgh 23: 103-122.

Anderson, T.R. and Rice, T. 2006. Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean. Endeavour 30: 131-137.

Forbes, E. 1851. On the Estuary Beds and the Oxford Clay at Loch Staffin, in Skye. Quarterly Journal of the Geological Society 7(1-2): 104-113; plate 5, figs. 4a-4c.

Hudson, J.D. and Palmer, T.J. 1976. A euryhaline oyster from the Middle Jurassic and the origin of the true oysters. Palaeontology 19: 79-93.

Wooster’s Fossil of the Week: A mytilid bivalve from the Middle Jurassic of southern Israel

August 5th, 2016

1 Mytilus (Falcimytilus) jurensis 585This week’s specimen comes from one of my favorite fossiliferous units: the Matmor Formation (Middle Jurassic, Callovian) of Makhtesh Gadol in southern Israel. I’ve been delighted by the fossils and lithologies of the Matmor since 2003. This particular fossil is exposed in a bedding plane of the very rich subunit 65, which I’ve mentioned before in this blog. It is a mytilid bivalve identified as Mytilus (Falcimytilus) jurensis It has the classic wing shape of its order.
2 Mytilus (Falcimytilus) jurensisM. jurensis is very common in the Matmor Formation, especially in the upper third where it can be seen protruding from limestones at a variety of angles. The species was widespread throughout the Tethys Ocean, now recorded by sediments in the Middle East and Mediterranean regions.
3 mytilids090809Mytilid bivalves are very common today as well, and they have the same life mode as they did at least 150 million years ago. They attach to hard substrates in shallow waters with strong fibers they secrete called byssal threads. Above we see our M. jurensis shell with several others clustered around a gastropod shell to which they were attached. The organic byssal threads are long gone, of course, but the shells remain in their living positions.

I like to use these Fossils of the Week to explore their taxonomic histories. The specimens, after all, are usually not exceptionally well preserved or rare, but they all have stories. Mytilus (Falcimytilus) jurensis proved to be a challenge when it came to identifying the author of the species.
4 MNHN figFirst I went to the online catalogue of the Muséum National D’Histoire Naturelle in Paris — an excellent resource. There I found the above image and information. Someone named Roemer named the species in 1836. So who was this Roemer and what was the publication?
5 Friedrich Adolph RoemerAfter considerable searching, I learned our taxonomist was Friedrich Adolph Roemer (1809-1869), a German geologist born in Hildesheim, part of the Kingdom of Westphalia. He had a younger brother, Carl Ferdinand von Roemer, who was also a geologist, creating some confusion.
6 Oolithen-GebrigesFriedrich Roemer has an 1836 book (above) that roughly translates as The Fossils of the North German Oolitic Mountains, “oolitic” referring to a kind of limestone common in the European Jurassic; for awhile it was essentially synonymous with “Jurassic”.
7 Plate IV, fig 10On Plate IV, fig. 10, of this 1836 book is a pair of drawings of Mytilus jurensis. So far all is on track for sorting out the taxonomic history of the species.
8 p 89Surprise! When we look at the description in the text on page 89, we see that Roemer gives an undated credit for the species to “Merain”. Who is Merain?
9 Thurmann p 13I thought I’d never find the identity of this “Merain”, but through the extraordinary resource of Google Books, I uncovered the earliest record of Mytilus jurensis. It is on page 13 of Thurmann (1833). Note that following the species (fourth line above) is “Mèr.” and then “n. sp.”, meaning “new species”. (I have no idea what the intervening “M. Bas.” indicates. [Update: See comment by Christopher Taylor below.]) There is no description of the species, and no illustration, but there’s the first mention of it.

So is “Mèr.” short for Roemer’s “Merain”? Turns out Roemer misspelled the last three letters — it is “Merian”.
10 Peter_MerianPeter Merian (1795-1883) was a Swiss geologist and paleontologist who was born in Basel. He studied scientific topics at the University of Basel, the Academy of Geneva, and the University of Gottingen. After two years in Paris, Merian returned to Baasel and began to specialize in the geology and fossils of the Jura Mountains. He was appointed a professor of physics and chemistry at the University of Basel, and later an honorary professor of geology and paleontology. He was also Director of the Natural History Museum in Basel. Along with his work on Triassic and Jurassic fossils, he also made contributions to glaciology and meteorology. Peter Merian died in Basel in 1883 after a long, notable career. He certainly looked the part of a dashing 19th Century Swiss geologist. Kevin McNally could play him in the movie! And now we know that he was the man who named Mytilus jurensis in 1833. Roemer (1836) was probably credited with the species at one point because he had the first description and figures. Merian, apparently, just provided the name in someone else’s book.
11 Merian map JuraHere is an 1829 geological map by Peter Merian of a portion of the Jura Mountains, one of the first of the region.

References:

Cox, L.R. 1937. Notes on Jurassic Lamelibranchia V. On a new subgenus of Mytilus and a new Mytilus-like genus. Journal of Molluscan Studies 22: 339-348.

Freneix, S. 1965 – Les Bivalves du Jurassique moyen et supérieur du Sahara tunisien (Arcacea, Pteriacea, Pectinacea, Ostreacea, Mytilacea). Annales de Paléontologie, t. 51, vol. 1, p. 51-113.

Liu, C. 1995. Jurassic bivalve palaeobiogeography of the Proto-Atlantic and application of multivariate analysis method to palaeobiogeography. Beringeria 16: 31123.

Liu, C., Heinze, M. and Fürsich, F.T. 1998. Bivalve provinces in the Proto-Atlantic and along the southern margin of the Tethys in the Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology 137: 127-151.

Merian, P. 1829. Geognostischer Durchschnitt durch das Jura-Gebirge von Basel bis Kestenholz bey Aarwangen, mit Bemerkungen über den Schichtenbau des Jura im Allgemeinen. Zürich.

Roemer, F.A. 1836. Die Versteinerungen des Nordeutschen Oolithen-Gebirges. Hahn. 218 pages.

Thurmann, J. 1833. Essai sur les soulèvemens Jurassiques du Porrentruy, avec une description géognostique des terrains secondaires de ce pays, et des considérations générales sur les chaines du Jura. Mém. Soc. Hist. Nat. Strasbourg 1: l-84.

Wooster’s Fossil of the Week: A bored rhynchonellid brachiopod from the Middle Jurassic of France

July 22nd, 2016

1 Kutchi dorsal 585Another beautiful brachiopod this week from our friend Mr. Clive Champion in England. His donations to our collections have considerably enriched our teaching program, especially for brachiopods! This specimen is the rhynchonellid Kutchirhynchia morieri (Davidson, 1852) from the Middle Jurassic (Upper Bathonian) of Luc-sur-Mer, France. This is a view of the dorsal side with the dorsal valve on top with the ventral valve (containing the round opening from which the stalk-like pedicle extended) seen below it. Like most rhynchonellids, the valves have distinct plicae (thick ridges) where the shell is tightly folded.
2 Kutchi ventral 585This is the ventral view showing only the exterior of the ventral valve. Note the curved serpulid worm tube attached near the center, and the squiggly borings. These were likely sclerobionts (hard substrate dwellers) that occupied the brachiopod shell when the animal was still alive, since the dorsal and ventral valves are still articulated. The borings are probably of the ichnogenus Talpina, but I would have to grind down the shell to know for certain.
SSBuckmanThe genus Kutchirhynchia was named by Sydney Savory Buckman (1860-1929) in 1917. We met Buckman earlier in this blog when looking at another of his Jurassic rhynchonellid genera, Burmirhynchia. We learned a lot more about Buckman this summer during our expedition to the Jurassic of Dorset, where he did much of his work. He is best known there as an ammonite worker and stratigrapher (and massive taxonomic splitter).
3 Thomas DavidsonThe species Kutchirhynchia morieri was named by the Scottish paleontologist Thomas Davidson (1817-1885), who originally placed it in the large genus Rhynchonella. Buckman acknowledges Davidson in an ammonite monographs as one of his “earliest geological friends”. (Davidson was 43 years older than Buckman.) Davidson was born in Edinburgh to wealthy parents. He studied at the University of Edinburgh and then in France, Italy and Switzerland, where he made many long geological tours. He was convinced by the German paleontologist Christian Leopold von Buch (1774-1853) to work on fossil brachiopods. (Von Buch was 43 years older than Davidson. Nice to see the older generation having an effect on those kids!) Davidson stayed with brachiopods his entire career, producing massive monographs on both fossil and recent forms. He engraved his own plates on stone, and there are more than 200 of them. Davidson was elected a fellow of the Geological Society of London in 1852, awarded the Wollaston medal in 1865. In 1857 he was elected a Fellow of the Royal Society, receiving their Royal medal in 1870. Upon his death in Brighton, England, in 1885, his entire collection of fossil and recent brachiopods went to the British Museum.
4 Elizabeth GrayThis is a good place to mention Elizabeth Anderson Gray (1831-1924), an important fossil collector in Scotland who supplied Thomas Davidson and many other paleontologists with critical specimens for their work. She is one of the many unnoticed heroes of paleontology, being rarely acknowledged publicly and then overshadowed by her husband. She worked primarily in the Ordovician and Silurian and so did not give Davidson Jurassic rhynchonellids, but she provided hundreds of brachiopods from the early Paleozoic. I love this image of her knocking out fossils with a hammer, just like we do today. Trowelblazers has an excellent biographical page on Elizabeth Anderson Gray.

References:

Buckman, S.S. 1917. The Brachiopoda of the Namyau Beds, Northern Shan States, Burma. Palaeontologia lndica 3(2): 1-254.

Gilman, D.C., Thurston, H.T. and Colby, F.M., eds. 1905. Davidson, Thomas (paleontologist). New International Encyclopedia (1st ed.). New York: Dodd, Mead.

Shi, X. and Grant, R.E. 1993. Jurassic rhynchonellids: internal structures and taxonomic revisions. Smithsonian Contributions to Paleobiology, Number 73, 190 pages.

Wooster’s Fossil of the Week: An ammonite from the Middle Jurassic of southern England

July 8th, 2016

Leptosphinctes microconch Jurassic Dorset 585We’re featuring just a workaday fossil this week because of other summer activities. This is the ammonite Leptosphinctes Buckman 1929 from the Inferior Oolite (Middle Jurassic) at Coombe Quarry, Mapperton, Dorset, southern England. Cassidy Jester (’17) and I collected it last month during our 2016 England research expedition. Our friend Bob Chandler generously identified it. It popped out of a rock we were pounding into submission, providing a direct application of ammonite biostratigraphy to our work. As with many ammonites, the group is well known but the names are still a bit dodgy.

This specimen is a microconch, meaning it is the smaller version of a species pair, the larger being the macroconch. It is presumed that this is sexual dimorphism and that the microconch is the male because it didn’t need to carry resources for egg-laying. This is one reason why the taxonomy of these ammonites is in perpetual revision.

References:

Buckman, S.S. 1909–1930. Yorkshire Type Ammonites & Type Ammonites. Wesley & Son, Wheldon & Wesley, London, 790 pl.

Chandler, R B., Whicher, J., Dodge, M. and Dietze, V. 2014. Revision of the stratigraphy of the Inferior Oolite at Frogden Quarry, Oborne, Dorset, UK. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 274: 133-148.

Galácz, A. 2012. Early perisphinctid ammonites from the early/late Bajocian boundary interval (Middle Jurassic) from Lókút, Hungary. Geobios 45: 285-295.

Pavia, G. and Zunino, M. 2012. Ammonite assemblages and biostratigraphy at the Lower to Upper Bajocian boundary in the Digne area (SE France). Implications for the definition of the Late Bajocian GSSP. Revue de Paléobiologie, Vol. spéc, 11: 205-227.

Wooster’s Fossils of the Week: Iron-oxide oncoids (“snuff-boxes”) from the Middle Jurassic of southern England

July 1st, 2016

1 Snuffbox colection BBThese fossils (in the broad sense!) are inevitable for our weekly feature considering how much time we spent studying and collecting them during last month’s fieldwork in Dorset, southern England. “Snuff-boxes” are the subject of Cassidy Jester’s (’17) Senior Independent Study project, so here we’ll just broadly cover what we think we know about them.

These discoidal objects are called “snuff-boxes” because their carbonate centers (usually a bit of limestone or shell) often erode faster than their iron-oxide exteriors, making them weather a bit like boxes with lids.
2 Quote from Buckman 1910 67This quote from Buckman (1910, p. 67) is the earliest reference I can find to the snuff-box term. Snuff-boxes were sometimes works of art in the 18th and 19th centuries, although quarrymen probably had more homespun varieties in mind.
1 Snuffbox serpulidssWe’re counting these snuff-boxes as fossils here because they formed through biotic and physical processes. The cortex of a snuff-box has layers of serpulid worm tubes, as shown above.
4 Palmer Wilson Fig 3There are also cyclostome bryozoans embedded within the iron-oxide layers, as shown in this image from Palmer and Wilson (1990, fig. 3).
3 Snuff-box horn 061716We believe the snuff-boxes grew by accretion of microbially-induced layers of iron-oxide formed on their undersides, which would have been gloomy caverns on the seafloor. They then would have occasionally turned over and grew layers on the other side. Many snuff-boxes have extensions on their peripheries that look in cross-sections like horns, as seen above. The layers are separate from those that formed around the nucleus. They may have grown after the snuff-box became too big to be overturned by currents or animals.
6 Platy minerals pdt19573Paul Taylor and I looked at the cortex of a snuff-box with Scanning Electron Microscopy (SEM) and had the above surprising view. The odd platy materials may be limonite, an iron-oxide that is amorphous (non-crystalline).
7 Hebrew letters pdt19572Sometimes the plates look like they’ve partially evaporated, leaving remnants that resemble Hebrew letters!
8 iron ooid pdt19576Associated with the snuff-boxes are small “iron ooids” that are about sand-size. They too have the platy materials, and so their origin may be similar to that of the snuff-boxes.

Cassidy has an interesting project ahead of her testing various origin hypotheses and sorting out the paleontology, mineralogy and geochemistry.

References:

Buckman, S.S. 1910. Certain Jurassic (Lias-Oolite) strata of south Dorset and their correlation. Quarterly Journal of the Geological Society 66: 52-89.

Burkhalter, R.M. 1995. Ooidal ironstones and ferruginous microbialites: origin and relation to sequence stratigraphy (Aalenian and Bajocian, Swiss Jura mountains). Sedimentology 42: 57-74.

Gatrall, M., Jenkyns, H.C. and Parsons, C.F. 1972. Limonitic concretions from the European Jurassic, with particular reference to the “snuff-boxes” of southern England. Sedimentology 18: 79-103.

Palmer, T.J. and Wilson, M.A. 1990. Growth of ferruginous oncoliths in the Bajocian (Middle Jurassic) of Europe. Terra Nova 2: 142-147.

Next »