Wooster’s Fossil of the Week: A long scleractinian coral from the Middle Jurassic of Israel

November 17th, 2013

Enallhelia_370_Callovian_Israel_585Just one image for this week’s fossil, but we make up for the numbers in image length! The above fossil with the alternating “saw teeth” is the scleractinian coral Enallhelia d’Orbigny, 1849. It is a rare component of the diverse coral fauna found in the Matmor Formation (Callovian-Oxfordian) in southern Israel. I collected this particular specimen (from locality C/W-370 in Hamakhtesh Hagadol, for the record) during this past summer’s expedition to the Negev. It is preserved remarkably well considering that its original aragonite skeleton has been completely calcitized.

Enallhelia is in the Family Stylinidae, also named by French naturalist Alcide Charles Victor Marie Dessalines d’Orbigny. (Love that name; he was briefly profiled in a previous entry.) There are many species in the genus (at least two dozen), but I can’t figure out which this one is. I’ll need a coral expert because half of the available species look pretty much the same to me. Enallhelia is a dendroid coral, meaning its corallum has tree-like branches, only one of which we see here. Each branch has alternating corallites on each side, which in life would have held the individual tentacular polyps. Each corallite has radial symmetry, not the usual hexameral symmetry as seen in most scleractinians. The genus ranges from the Jurassic into the Cretaceous and is cosmopolitan. Enallhelia is especially well known from Europe, but that may be just a collector effect.

What I like about Enallhelia is that it can be an excellent paleoenvironmental marker. Leinfelder and Nose (1997) show that it is most often found in “marly coral meadows” near storm wavebase on carbonate platforms. This means it is in shallow but quiet waters well within the photic zone most of the time, but may be occasionally disturbed by storm wave currents. This is an accurate description of most of the depositional environment of the Matmor Formation.


Hudson, R.G.S. 1958. The upper Jurassic faunas of southern Israel. Geological Magazine 95: 415-425.

Leinfelder, R.R. and Nose, M. 1997. Upper Jurassic coral communities within siliciclastic settings (Lusitanian Basin, Portugal): Implications for symbiotic and nutrient strategies. Proceedings of the 8th International Coral Reef Symposium 2: 1755-1760.

Olivier, N., Martin-Garin, B., Colombié, C., Cornée, J.-J., Giraud, F., Schnyder, J., Kabbachi, B. and Ezaidi, K. 2012. Ecological succession evidence in an Upper Jurassic coral reef system (Izwarn section, High Atlas, Morocco). Geobios 45: 555-572.

Wooster paleontologists present at the Geological Society of America meeting in Denver

October 28th, 2013

Lizzie102813DENVER, COLORADO–Yesterday Oscar Mmari (’14) gave the first presentation from Wooster’s Team Israel 2013 at the annual meeting of the Geological Society of America in Denver. Today our two paleontologists on the team discussed their posters.

Above is Lizzie Reinthal (’14) cheerfully giving her poster entitled: “Taphonomic feedback and facilitated succession in a Middle Jurassic shallow marine crinoid community (Matmor Formation, southern Israel)“. Her work is co-authored with our friend Howie Feldman. Below Steph Bosch (’14) is ready to discuss her work: “First bryozoan fauna described from the Jurassic tropics: Specimens from the Matmor Formation (Middle Jurassic, Upper Callovian) in southern Israel“. Steph’s poster has the famous palaeontologist Paul Taylor as a co-author.

Steph102813It is great fun to see these students make the transition, both intellectually and physically, from the scorched desert floor of the Negev to such a professional setting. The faculty are very proud.


First Wooster geology presentation at the 2013 annual meeting of the Geological Society of America in Denver, Colorado

October 27th, 2013

Oscar102713DENVER, COLORADO–It’s that time of year for geologists when we collect at one of two major national meetings. Wooster geologists are always well represented at the Geological Society of America convention, this year held in downtown Denver. Meagen Pollock, Shelley Judge and I are here with nine enthusiastic Wooster students. Some events have already taken place (notably for me the paleontology short course and an epic annual banquet meeting of the Paleontological Society), and we’ve had our first student poster presentation.

Oscar Mmari is shown above with his poster entitled: “Syndepositional faulting, shallowing and intraformational conglomerates in the Mishash Formation (Upper Cretaceous, Campanian) at Wadi Hawarim, southern Israel“. Readers of this blog will remember Oscar’s summer work in the Negev measuring and describing sections. Oscar’s presentation went very well. Every time I stopped by the poster someone was in deep conversation with him.

CCC102813Here’s an early morning view of the Colorado Convention Center in Denver where we’re doing our work and study (and socializing, truth be told). The weather this weekend has been fantastic, but a big change will come tomorrow morning.

More posts will follow!

Wooster’s Fossil of the Week: A nautiloid from the Middle Jurassic of southern Israel

September 8th, 2013

Cymatonautilus_AThis is the first nautiloid specimen I’ve seen in the Matmor Formation (Middle Jurassic, Callovian) after ten years of collecting in it. Our colleague Yoav Avni (Geological Survey of Israel) picked it up during this summer’s fieldwork. It is a beautiful internal mold in which the outer shell has been mostly removed, revealing the radiating lines where the internal walls (septa) intersected the outer shell. These intersections are called sutures. Here we see nice, simple sutures characteristic of nautiloids. Ammonites, on the other hand, can have very complex sutures indeed. Note that some of the outer shell still remains as an orangish layer recrystallized to calcite from the original aragonite. There are two round holes in the foreground. I’d like to think these are tooth marks from a predator, but there is not enough evidence to say that with any seriousness.
Cymatonautilus072913_BThis view of the outer edge of the top specimen shows a diagnostic feature of this particular genus: a deep sulcus (channel) running along the venter (periphery). Most nautiloids have a rounded venter, so this characteristic stands out.
Cymatonautilus072913_CThis is a side view of another specimen of the same nautiloid, also found by Yoav. The large hole at the center of coiling is called the umbilicus. It is especially large in this Matmor nautiloid. Note again the radiating sutures where the outer wall has been removed.

This nautiloid appears to belong to the genus Paracenoceras Spath 1927. I had to have this beaten into me by a half-dozen cephalopod workers. I thought it looked a lot like Cymatonautilus collignoni Tintant, 1969. If so, it would have been a new occurrence of this rare genus — the closest it has previously been found is in Saudi Arabia. Most importantly, it would have been a range extension for this genus. Previously it has been well documented as having appeared in a very short time interval: the latest early Callovian into the middle Callovian. In the Matmor Formation we found it in a bed in the upper Callovian, specifically subunit 52 in the Quenstedtoceras (Lamberticeras) lamberti Zone. Alas, my dreams of a paper describing this discovery was not to be. Another beautiful idea skewered by reality.

Paracenoceras was described by Leonard Frank Spath (1882-1957) in 1927. Spath was an interesting character. He was a British paleontologist who specialized in ammonites, but also delved into other cephalopods like our nautiloid genus here. He was a BSc graduate of Birkbeck College in 1912, eventually earning a doctorate at the same institution, now known as Birkbeck, University of London. He was a curator in the British Museum (Natural History) for most of his career. He was especially interested precise Jurassic and Cretaceous biostratigraphy using ammonites. He published more than 100 papers and monographs, was elected as a Fellow of the Royal Society, and received the Lyell Medal from the Geological Society of London in 1945. Spath was well known for his biting criticisms of German paleontologists, especially those who worked on ammonites. Turns out that he was keeping a secret from everyone, including his own children: his parents were German! His son (F.E. Spath) discovered this long after his death, publishing an account of his father in 1982. The elder Spath no doubt kept his German heritage secret for the obvious reasons, given his time and place.


Branger, P. 2004. Middle Jurassic Nautiloidea from western France. Rivista Italiana di Paleontologia e Stratigrafia 110: 141-149.

Halder, K. 2000. Diversity and biogeographic distribution of Jurassic nautiloids of Kutch, India, during the fragmentation of Gondwana. Journal of African Earth Sciences 31: 175-185.

Halder, K. and Bardhan, S. 1996. The fleeting genus Cymatonautilus (Nautiloidea): new record from the Jurassic Charl Formation, Kutch, India. Canadian Journal of Earth Sciences 33: 1007-1010.

Kummel, B. 1956. Post-Triassic nautiloid genera. Bulletin of the Museum of Comparative Zoology 114(7): 320-494.

Spath, F.E. 1982. L.F. Spath (1882 – 1957), ammonitologist. Archives of Natural History 11: 103-105.

Tintant, H. 1969. Les “Nautiles à Côtes” du Jurassique. Annales de Paleontologie Invertébrés 55: 53-96.

Tintant, H. 1987. Les Nautiles du Jurassique d’Arabie Saoudite. Geobios 20: 67-159.

Tintant, H. and Kabamba, M. 1985. The role of the environment in the Nautilacea, p. 58-66. In: Bayer, U. and Seilacher, A. (eds.), Sedimentary and Evolutionary Cycles. Lecture Notes in Earth Sciences, vol. 1, Springer (Berlin).

Wooster’s Fossil of the Week: An almost planispiral gastropod from the Middle Jurassic of southern Israel

August 11th, 2013


Discohelix tunisiensis apical copyAdd this to the list of fossils that have confused me. This summer, during a Wooster expedition, Lizzie Reinthal and Steph Bosch collected the above specimen from the Matmor Formation (Middle Jurassic, Callovian) of southern Israel. I simply assumed it was an ammonite, especially because we were anxious to find ammonites to further reinforce our biostratigraphic framework (how we tell in which geological time interval our fossils belong). When I later tried to identify it by searching through the Jurassic ammonite literature, though, I could find nothing like it. I then sent a photograph to my friend Zeev Lewy, a prominent ammonite expert recently retired from the Geological Survey of Israel. His answer was a surprise: this fossil is the gastropod Discohelix tunisiensis Cox 1969.
Discohelix tunisiensis adapicalHow could this be a snail when it looks so much like a cool, multi-whorled planispiral ammonite, complete with ribs? Well, it is not planispiral, now that I look at it again. Above you see the other side of the specimen, with its slightly depressed center. Most ammonites don’t show such asymmetry. This actually is a gastropod, and it represents an ancient group (the clade Vetigastropoda — don’t get me started on the complications of gastropod systematics!) with primitive features reminiscent of Paleozoic marine snails (from a group I learned to call “archaeogastropods“). It is not as much that the snail has converged on an ammonite style of shell, it’s that the ammonites developed a similar shell much later for entirely different reasons (swimming, for example). Discohelix was likely an herbivore grazing in patchy coral reefs like we have represented in the Matmor Formation. It has become a useful index fossil for the Jurassic of the Tethyan Realm, although this is the first time I’ve found it in Israel.
Pseudotorinia (Architae-group) retiferaThe above is the marine snail Pseudotorinia (Architae-group) retifera. It used to be called Discohelix retifera, and you can see why. It may not be in the same genus, but you can see that this modern group and Discohelix are closely related. Discohelix itself is now known only from the fossil record.
DunkerDiscohelix was named as a genus in 1847 by Wilhelm Bernhard Rudolph Hadrian Dunker (1809-1885), a German natural scientist with interests in geology, paleontology and marine zoology. (I love that middle name of “Hadrian”.) Like so many 19th Century paleontologists, Dunker started with a practical training in mining engineering and then followed a passion for fossils and modern shells. He had a huge collection of materials that eventually ended up in the Museum für Naturkunde in Berlin. He traded and corresponded with many top scientists of his day, including Charles Darwin. He also published many monographs on modern and fossil molluscan taxa. In 1846, he and Hermann von Meyer established the journal Palaeontographica. This journal survives to this day in two descendants: Palaeontographica A (Paleozoology, Stratigraphy) and Palaeontographica B (Paleobotany).


Cox, L.R. 1969. Gasteropodes Jurassiques du Sud-Est Tunisien [Jurassic gastropods from SE Tunisia]. Annales de Paleontologie, Invertebres 55: 241-268.

Grundel, J. 2005. The genus Discohelix Dunker, 1847 (Gastropoda) and on the content of the Discohelicidae Schroder, 1995. Neues Jahrbuch fur Geologie und Palaontologie-Monatshefte 12: 729-748.

Tëmkin, I., Glaubrecht, M. and Köhler, F. 2009. Wilhelm Dunker, his collection, and pteriid systematics. Malacologia 51: 39-79.

Wendt, J.1968. Discohelix (Archaeogastropoda, Euomphalacea) as an index fossil in the Tethyan Jurassic. Palaeontology 11: 554-575.

Wooster’s Fossil of the Week: An irregular echinoid from the Middle Jurassic of southern Israel

August 4th, 2013

Holectypus depressus adoral 585From the view above, this fossil from the Matmor Formation (Middle Jurassic, Callovian) of southern Israel looks like your standard echinoid (a group that contains sea urchins and sand dollars), but turn it on its side (see below) and you see it is unusual. Echinoids have two large categories: those that are globular in shape (like sea urchins) are called “regular“, and those that are flattened (like sand dollars) are “irregular“. (I know, oddly value-laden terms, these.) This specimen belongs to a group that is rounded on its top portion and flattened on its bottom (oral) surface. This between-ness makes it a fun little specimen.
Holectypus depressus Side 585I could not identify this echinoid, which we collected on our Israel expedition this summer, because I could not find the most important diagnostic features. Fortunately my colleague Andrew Smith, recently retired from the Natural History Museum in London, quickly knew what it was. (This is not surprising — he’s the world’s expert on fossil echinoids. Check out his incredible Echinoid Directory.) Andrew identified this specimen as belonging to the genus Holectypus Desor, 1842, and probably the species Holectypus depressus (Leske, 1778).
Holectypus depressus apical system 585The first feature Andrew noticed was the apical disk on the very top of the test (the term for an echinoid skeleton). In the above image (where the black scale bar = 200 microns) I’ve labelled the four gonopores (where gametes exit, as you might have guessed) and the madreporite (a sieve plate at the opening of the water vascular system). This arrangement is characteristic of the genus.
Holectypus depressus oral 585Most surprising to me was Andrew’s identification of the most obvious defining feature of Holectypus, the periproct (the anal opening). I couldn’t find it, but Andrew knew where to look. In this view of the oral surface, it is the gap labeled “P”. Looks just like a place where the test is broken, right?
Callovian France HolectypusHere is the oral surface of an unbroken Holectypus specimen from the Callovian of France. The large periproct is immediately visible as the whole at the bottom. Now the broken margin of the periproct on our specimen makes sense.

Holectypus belongs to a group of irregular echinoids still around today. They are sometimes characterized as having “conservative” evolution, meaning they have not changed much over long periods. The irregular echinoids appeared earlier in the Jurassic as a modification of their regular ancestors. They became flattened and bilateral, the periproct moved out of the apical disk, their ambulacra (rows of tube feet visible as tiny holes radiating from the apical disk on the top image) pulled up away from the mouth, and their spines were reduced in size and increased in number. These were primarily adaptations for burrowing into the sediment. Holectypus has retained its inflated upper portion, has relatively large spines (some still cling to our specimen), and still is circular in outline. It was a deposit feeder but not specialized for burrowing.

We wouldn’t want to call this a “transitional fossil”, but it is a nice example of the gradient of adaptations present when there is a major outbreak of innovation as during the rise of the irregular echinoids in the Jurassic.


Kroh, A. and Smith, A.B. 2010. The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology 8: 147-212.

Rose, E.P.F. and Olver, J.B.S. 1985. Slow evolution in the Holectypidae, a family of primitive irregular echinoids, p. 81-89. In: Keegan, B.F. and O’Connor, B.D.S. (eds.), Proceedings of the Fifth International Echinoderm Conference, Galway, 24-29 September, 1984.

Saucède, T., Mooi, R. and David, B. 2007. Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea). Geological Magazine 144: 333-359.

Wooster’s Fossil of the Week: An infected crinoid from the Middle Jurassic of southern Israel

July 28th, 2013

CrinoidGalls03 copyThis weathered beauty is a stem fragment of the articulate crinoid Apiocrinites negevensis from the Matmor Formation (Middle Jurassic, Callovian) of the Negev, southern Israel. The regular divisions you see making up the stem are the columnals, which look a bit like a stack of poker chips. You can even make out the crenulations on the articulating faces of the columnals, seen as tiny zig-zags. What is unusual about this stem, of course, are the large swellings with multiple holes. These appear to be something like the galls you sometimes see in plant stems formed when a parasite is surrounded by living plant tissue.
CrinoidGalls02 copySenior Independent Studies student Lizzie Reinthal (’14) is working on these odd structures (we have dozens of examples) as part of her investigation of the taphonomy of A. negevensis in the Matmor Formation. We know that the swellings were made by the interaction of some sort of organism with the living crinoid, but we don’t yet know the timing or mechanism. It could be that the holes were drilled first into the stem and the crinoid grew the extra skeletal tissue to essentially push them away, or the swellings could have been the equivalent of galls and some sort of enclosed animal bored its way out of the structure. (And an extra point to those of you who spotted the barnacle boring! Note that it has no swelling around it and thus was likely drilled after the death of the crinoid.)

These infected crinoid stems were first described from the Matmor by Feldman and Brett (1998). They suggested they were from parasitic myzostome worms, which are usually found on crinoid arms and have a long fossil record (see Meyer and Ausich, 1983, and Hess, 2010). They could also be from some sort of embedded organism like that represented by Phosphannulus on Paleozoic crinoid stems (Welch, 1976).

Lizzie will be pursuing the mystery by careful sectioning some of these swellings and seeing if she can relate the crinoid skeletal growth patterns to either a borer or an embedded parasite. Unfortunately that means we must destroy some specimens to better understand the phenomenon, a classic dilemma paleontologists sometimes face.


Feldman, H.R. and Brett, C.E. 1998. Epi- and endobiontic organisms on Late Jurassic crinoid columns from the Negev Desert, Israel: Implications for co-evolution. Lethaia 31: 57–71.

Hess, H. 2010. Myzostome deformation on arms of the Early Jurassic crinoid Balanocrinus gracilis (Charlesworth). Journal of Paleontology 84: 1031-1034.

Meyer, D.L. and Ausich, W.I. 1983. Biotic interactions among recent and fossil crinoids, p. 377–427. In: Tevesz, M.J.S. and McCall, P.L., eds., Biotic interactions in recent and fossil benthic communities. Plenum Press, New York.

Welch, J.R. 1976. Phosphannulus on Paleozoic crinoid stems. Journal of Paleontology 50: 218-225.

An ancient Nabatean, Roman and Byzantine city in the northern Negev

July 12th, 2013

MamshitGuardhouseMansion071213MITZPE RAMON, ISRAEL–Our final stop of the final day: Mamshit. Above you see some of the ruins of this city east of Dimona and a short distance west of the descent into the Dead Sea Rift Valley. The highest structure is the “guardhouse” (which overlooked a reservoir) and the lower on the right is known as “the wealthy house”. All the other rocks you see are remnants of mostly homes and other dwellings.

Mamshit was established by the Nabateans as a station along the Incense Route around 50 CE. Most of the primary buildings were constructed in the Second Century after the Nabatean Kingdom became part of the Roman Empire. As a trading city it flourished until the Seventh Century when either the Persian (614 CE) or the Arab Invasion (636 CE) ended its importance and it faded away. Today we toured it for about an hour and we were the only people there.

MamshitDam071213From the Guardhouse one of the three Mamshit dams comes into view. These were the most critical structures in the settlement because they captured the winter runoff in reservoirs that could be used throughout the dry summers. The area behind this dam is now completely silted up. There was a British police post at this site in the 1930s and 1940s running a series of patrols on camels. The Brits rebuilt the dam for their own use.

MamshitWesternChurch071213This is a lavish church (the “western church” or “Church of St. Nilus”) in Mamshit. Beautiful mosaics are still preserved on the floors.

MamshitStudentsExploring071213The Wooster students are her exploring one of the grander houses built in the Second Century.

MamshitDoorways071213Steph and Lizzie are using the doorways to estimate the likely heights of the residents. Looks like they were more Lizzie size than Steph!

This was a suitable place to end the Team Israel 2013 expedition: a location where geology, archaeology, history and culture are combined in ruins still open for interpretation and study. Now we have one more night before departing early in the morning for the airport in Tel Aviv. We appreciate this opportunity for travel and research very much!

Wooster Geologists in the Dead Sea

July 12th, 2013

LizzieStephDeadSea071213MITZPE RAMON, ISRAEL–The Wooster Geologists in Israel spent their last full day in the country visiting the Dead Sea Rift Valley and an archaeological site. It feels very good to have packed our hiking boots away for the season. Above, of course, is Lizzie Reinthal and Steph Bosch floating in the hypersaline waters of the Dead Sea at an almost deserted Ein Gedi beach. The surface of the water here is at -427 meters, or about 1400 feet below sealevel, making it the lowest point on land. The water Lizzie and Steph are floating in is 8.6 times saltier than typical seawater. This means I don’t have to worry about anyone drowning here. (Swallowing the water and getting it in eyes and ears is another story!)

OscarDeadSea071213Oscar Mmari was there as well. His style was a bit more relaxed. He was no doubt pondering that the amount of bromine in these waters (at 4.2 g/kg) is the highest anywhere on Earth.

SodomSaltStudents071213On the way to Ein Gedi we stopped by the famous Mount Sodom — a mountain of salt. This is a famous salt diapir, or a salt dome that has reached the surface. The layers of salt here are vertical because of deformation caused by the upward movement of the material. The salt, mostly halite, moves up because it is less dense and more plastic than the overlying sediments.

SodomSalt071213This is a close view of the salt layers. It is very difficult to distinguish original sedimentary layers from planes developed by shear stress.

LotWifeSodomSalt071213The spot we briefly explored is underneath a jointed block of salt referred to as “Lot’s Wife”. Remember her? In Genesis she looked back at the destruction of Sodom and was turned into a pillar of salt. If this is her she was about 60 feet tall.


Last day of fieldwork for Team Israel 2013

July 11th, 2013

1_DragFoldOscar071113MITZPE RAMON, ISRAEL–We like to think that Dr. Shelley Judge would be proud of our fieldwork today. The Wooster Geologists returned to Wadi Hawarim to finish our fieldwork for Oscar Mmari’s project on synsedimentary faulting in the Mishash Formation (Campanian, Upper Cretaceous). We returned to the fault visible above just to the left of the dark outcrop of the lower Mishash. The left side is upthrown, the right downthrown, making this a very steep normal fault. the Mishash seen here is in a magnificent drag fold against the fault. The Mishash is eroded away on the upthrown block, so we could only climb to the top of the hill here and estimate the minimum displacement on the fault. The blocks are separated by at least 50 meters. The fault trace is almost exactly east-west. You can barely see Oscar in the lower right standing on the spot where the Mishash rocks fold more than 90° to become horizontal to the right. Oscar and I worked today to follow the fate of a conglomerate that is thickest at the fault where Oscar is standing (location 031 on the image at the end of this post), and then thins and becomes finer as we move away from the fault into the syncline to the south. We believe this indicates that the conglomerate came from the upthrown block and thus the fault formed while the Mishash was being deposited. (Lizzie Reinthal and Steph Bosch, in the meantime, collected more shark’s teeth for us and then explored the wadi system.)

2_HawarimPhosphorites071113This is the Mishash Formation phosphorite zone several hundred meters south of the fault (location 049 in the bottom image). It is much thicker than the section near the fault (see the top photo in this entry).

3_ThinConglomerates071113The conglomerate that is a meter thick near the fault is reduced to these two lensoidal coarse sandstones that Oscar found in this southernmost outcrop. The grain size and thickness reduces dramatically as we move away from the fault.

4_WadiHawarimSection071113This beautiful Wadi Hawarim section of the phosphorites gave us our final clues as to the relationship between the fault and the conglomerate. We also have a sealevel story here with shrimp burrows, but we’ll save that for a later post after Oscar has done some lab work.

5_Hawarim071113Here is a Google Earth view of Oscar’s collecting sites and measured sections. The fault shown in the top photo is at 031, with the photo taken from 047. The fault runs east-west, and Oscar’s sites are all to the south.


« Prev - Next »