Wooster’s Fossils of the Week: Echinoderm holdfasts from the Upper Cambrian of Montana

May 27th, 2016

Pelmatozoans051216The white buttons above are echinoderm holdfasts from the Snowy Range Formation (Upper Cambrian) of Carbon County, southern Montana. They and their hardground substrate were well described back in the day by Brett et al. (1983). We have these specimens as part of Wooster’s hardground collection. (The largest collection of carbonate hardgrounds anywhere! A rather esoteric distinction.)

These holdfasts are the cementing end of stemmed echinoderms, conveniently called pelmatozoans when we don’t know if they were crinoids, blastoids, cystoids, or a variety of other stemmed forms. I suspect these are eocrinoid attachments, but we have no evidence of the rest of the organism to test this.
Snowy bedThe hard substrate for the echinoderms is a flat-pebble conglomerate, a distinctive kind of limestone found mostly in the Lower Paleozoic. They are in some places associated with limited bioturbation (sediment stirring by organisms) and early cementation, but there are other origins for these distinctive sediments (see Myrow et al., 2004).
Snowy crossThis particular flat-pebble conglomerate was itself cemented into a carbonate hardground, as seem in this cross section. The pelmatozoan holdfasts are just visible on the upper surface.

These pelmatozoans are among the earliest encrusters on carbonate hardgroounds and thus have an important position in the evolution of hard substrate communities.

References:

Brett, C.E., Liddell, W.D. and Derstler, K.L. 1983. Late Cambrian hard substrate communities from Montana/Wyoming: the oldest known hardground encrusters: Lethaia 16: 281-289.

Myrow, P. M., Tice, L., Archuleta, B., Clark, B., Taylor, J.F. and Ripperdan, R.L. 2004. Fat‐pebble conglomerate: its multiple origins and relationship to metre‐scale depositional cycles. Sedimentology 51: 973-996.

Sepkoski Jr, J.J. 1982. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. In: Cyclic and event stratification (p. 371-385). Springer, Berlin Heidelberg.

Taylor, P.D. and Wilson, M.A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62: 1-103.

Wooster’s Fossil of the Week: A phyllocarid crustacean from the Middle Cambrian Burgess Shale of British Columbia, Canada

May 20th, 2016

Canadaspis perfecta Burgess Shale 585We are fortunate at Wooster to have a few fossils from the Burgess Shale (Middle Cambrian) collected near Burgess Pass, British Columbia, Canada, including this delicate phyllocarid Canadaspis perfecta (Walcott, 1912). This species is one of the oldest crustaceans, a group that includes barnacles, crabs, lobsters and shrimp. Please note from the start that I did NOT collect it. The Burgess Shale is a UNESCO World Heritage Site, so collecting there is restricted to a very small group of paleontologists who have gone through probably the most strict permitting system anywhere. I had a wonderful visit to the Burgess Shale with my friend Matthew James in 2009, and we followed all the rules. (The photo below is of the Walcott Quarry outcrop.) Our Wooster specimen was in our teaching collection when I arrived. I suspect it was collected in the 1920s or 1930s and probably purchased from a scientific supply house.

walcottquarryMarrellaSuch a dramatic setting, which is perfect for the incredible fossils that have come from this site.

Canadaspis perfecta drawing

Canadaspis perfecta has been thoroughly studied by Derek Briggs, the most prominent of the paleontologists who have studied the Burgess Shale fauna. The above reconstruction of C. perfecta is from his classic 1978 monograph on the species. He had spectacular material to work with, including specimens with limbs and antennae well represented. Our specimen is a bit shabby in comparison! Nevertheless, we can still make out abdominal segments and a bit of the head shield.

Briggs (1978, p. 440) concluded that C. perfecta likely “fed on coarse particles, possibly with the aid of currents set up by the biramous appendages”. This is a similar feeding mode to many of the trilobites who lived alongside.

References:

Briggs, D.E. 1978. The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 281: 439-487.

Briggs, D.E. 1992. Phylogenetic significance of the Burgess Shale crustacean Canadaspis. Acta Zoologica 73: 293-300.

A Wooster Geologist Visits Spangler Park

May 9th, 2016

Chloe1Editor’s note: The following entry was written by Chloe Wallace (’17), a student in this year’s Sedimentology & Stratigraphy course. One of our writing assignments was to write a blog post about our recent field trip to Spangler Park (also known as Wooster Memorial Park). I told the class that I would publish on this site the best entry, and Chloe won. It was a very close contest, though, with many other excellent entries. All the following words and images are Chloe’s.

Wooster, Ohio— On April 23, 2016, the Sedimentology and Stratigraphy class took a field trip to the local Wooster Memorial Park, also called Spangler Park. The goal was to study three separate outcrops, and then do a little exploring of our own.

The first stop was a short walk from the entrance to the park, specifically at 40.81475° North and 82.02383° West (above).

This outcrop contains rocks from the Logan Formation of the Lower Carboniferous. The rocks were non-laminated and of silt size, so it is made of siltstone. There are signs of a little bit of oxidation. There are also ripples present on some of the rocks, which is evidence of a shallow water environment. There were gray shale clasts within the siltstone, which were most likely deposited by storm events. The fact that some of the beds are thicker than others is more evidence of storm events because more sediment would have been deposited during storms and thinner beds would have built up during times of less activity. The bedding angles vary throughout the outcrop, also known as cross-stratification, which is more evidence that ripples and dunes were present as part of a flow regime at the time of deposition.

Chloe2Burrow fossils, which are a form of trace fossil, were left behind by deposit feeding organisms on some of the rocks. This is more evidence of a shallow, marine environment. Based on all the sedimentary structures and characteristics found at this outcrop, these rocks were deposited on the shallow shelf, below the fair weather wave base and above the storm wave base.

The Logan Formation is made up of five members, but specifically the Byer member is likely exposed here. Layers of fine sandstone and siltstones with shale sometimes inter-bedded characterize the Byer member (Hunt, 2009). Although it isn’t present in the two photos above, another member is usually deposited right below the Byer Member. It is called the Berne Member and it is composed of molasse rock, which is a quartz-rich conglomerate formed when the eroded material from continental collisions gathers in a foreland basin. In this case it is eroded material from the continental collisions that built up the Appalachians. The eroded material was then deposited to the west in the foreland basin that covers Pennsylvania and Ohio.

The second outcrop we reached was at the bottom of a gorge, along Rathburn Run, specifically at 40.81784° N and 82.02946° W. The exposure was composed of laminated grey shale from the Cuyahoga Formation. It marked a formation boundary because Logan Formation sandstone lies directly above it. This means the grey shale is older than the Logan Formation. Similar to the Logan Formation, there are trace fossils of marine burrowing organisms within the shale.

Chloe3In the above picture you can see an East-West trending joint running through the center of the Cuyahoga Formation grey shale caused by tectonic faulting, which is a phenomenon unrelated to the sedimentary structures.

Chloe4Siderite deposits were also found in some sandstone at the Rathburn run outcrop, which form after deposition, a diagenetic property. Siderite forms in anoxic environments where iron is reduced and sulfur is present. The grey shale of the Cuyahoga Formation isn’t porous enough for siderite replacement to take place, but the sandstone is.

The third outcrop was father upstream along on a cut bank, located at 40.81903° N and 82.02953° W.

Chloe5This photo is taken from across Rathburn Run, from the point bar. This outcrop is much younger in age, from the last time Ohio was affected by glaciation. During the Last Glacial Maximum, specifically the Pleistocene, glacial debris flows deposited the bottom section of the outcrop. The sediment is characterized by a fining upwards sequence and has two scales of support. Some areas of the deposit are composed of large grains within a matrix-support due to debris flow. Other areas of the deposit are composed of sandy conglomerate rock that is grain supported. Overall the sediment is poorly sorted and contains glacial erratics within the sediment, including boulders made of gneiss, granite, and some sedimentary rocks.

A channel cut through the original glacial debris flow deposit and was eventually filled in by wind-blown silt, also known as loess. Loess is characteristically different from the glacial deposit at the bottom of the outcrop. Loess breaks in sheets, which causes it to have steep angles. Overall, the history of this outcrop is that approximately 15,000 years ago debris flow events deposited the glacial sediment at the bottom of the outcrop, then a channel cut into the deposit and that channel eventually filled with eolian (wind-blown) silt.

Chloe6After venturing a little on our own, a few other students and myself came across a fourth outcrop that was from the Logan Formation at an elevation above both the Cuyahoga Formation shales and the glacial deposits. There is more evidence of jointing and cross-stratification that can be seen in the picture.

We saw two separate formations from the Lower Carboniferous during the field trip. We also were able to see another type of sedimentary deposit that was glacial and eolian in origin. Spangler Park displays and exposes a variety of sedimentary structures and sedimentary characteristics. The park can be characterized as displaying a coarsening upwards sequence with the Cuyahoga shale at the bottom, followed by the coarser siltstone and sandstone of the Logan Formation. This kind of coarsening upwards is usually evidence of either regression or progradation.

Both the Logan and Cuyahoga Formations are representative of shallow marine environments, as was seen in the evidence found at Spangler. Further research shows that the Cuyahoga Formation was deposited as part of a marine environment where the shoreline was prograding during the Kinderhookian and possibly very early Osagean (Bork and Malcuit, 1979; Matchen and Kammer, 2006). The Logan Formation followed and was deposited within a marine proximal deltaic environment during the Osagean (Hunt, 2009; Matchen and Kammer, 2006). This explains the coarsening upwards sequence and the marine sedimentary structures and fossils seen throughout the field trip.

References:

Bork, K.B., and Malcuit, R., 1979, Paleoenvironments of the Cuyahoga and Logan Formations (Mississippian) of central Ohio: Geological Society of America Bulletin II, v. 90, p. 1782-1838.

Hunt, H., 2009, Paleocommunities and Paleoenvironments of the Logan Formation (Mississippian, Osagean) of northeastern Ohio [Undergraduate thesis]: Wooster, The College of Wooster, 50 p.

Matchen, D.L., and Kammer, T.W., 2006, Incised valley fill interpretation for Mississippian Black Hand Sandstone, Appalachian Basin, USA: Implications for glacial eustasy at Kinderhookian-Osagean (Tn2-Tn3) boundary: Sedimentary Geology, v. 191, 89-113.

Wooster’s Fossil of the Week: A craniid brachiopod from the Upper Cretaceous of The Netherlands

May 6th, 2016

1 Isocrania costata Sowerby 1823 double 2 smThese striking little brachiopods are gifts from Clive Champion, a generous Englishman with whom I occasionally exchange packets of fossils. In January I received a surprise box with lots of delicious little brachs, including the two shown above. I remember this type well from a field trip I had to the Upper Cretaceous of The Netherlands.
2 Isocrania costata Sowerby 1823 double 1 smHere we see the reverse sides of the shells at the top. These are most likely dorsal valves of Isocrania costata Sowerby, 1823, from the Lichtenberg Horizon, Upper Maastrichtian (Upper Cretaceous) of the ENCI Quarry near Maastricht, The Netherlands. It is possible they are the closely-related species Isocrania sendeni Simon, 2007, but we don’t have enough material to sort this out.
4 Surlyk 1973 fig 2 copyCraniid brachiopods usually live out their lives attached to hard substrates, as with this Ordovician example. This species of Isocrania, however, was only attached to shelly debris on the seafloor for a short time, outgrowing its substrate early and then living free in the chalky sediment. The above reconstruction image is Figure 2 from Surlyk (1973).

Christian Emig (2009) has a bit of folklore about Isocrania. In medieval Sweden these fossils were called “Brattingsborg pennies” for their size, shape and the face-like image on their interiors. Don’t see the face? Check this out from Emig (2009):
5 Ventral C craniolaris fig 6 SurlykThe “eyes” in this ventral valve are large adductor muscle scars, and the “mouth” and “nose” are a smaller set. Here is one of the “Brattingsborg pennies” legends Emig (2009) relates —

“… at the beginning of the 13th century the archbishop Anders Sunesen spent his last days on the island of Ivö, in his own castle of which the cellar was about 2 km southeast of the castle. In 1221, subjected to the terminal stages of leprosy, he spent his last days on the island. One day he was informed that warriors had stolen a large sum of money from the Brattingsborg castle. They spent that night gambling and carousing in the cellar. The archbishop cursed this money and the following morning the warriors were stunned to find that the coins had turned into stones with a laughing death’s-head on them.”

Thanks for starting us on this trip with your gift, Clive!
3 Isocrania costata Sowerby 1823 sm
References:

Emig, C. 2009. Nummulus brattenburgensis and Crania craniolaris (Brachiopoda, Craniidae). Carnets de Géologie/Notebooks on Geology, Brest, Article, 8.

Hansen, T., and Surlyk, F. 2014. Marine macrofossil communities in the uppermost Maastrichtian chalk of Stevns Klint, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 323-344.

Simon, E. 2007. A new Late Maastrichtian species of Isocrania (Brachiopoda, Craniidae) from The Netherlands and Belgium. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre 77: 141-157.

Surlyk, F. 1973. Autecology and taxonomy of two Upper Cretaceous craniacean brachiopods. Bulletin of the Geological Society of Denmark 22: 219-242.

Wooster’s Fossil of the Week: A terebratulid brachiopod from the Middle Jurassic of northwestern France

April 29th, 2016

1 Cererithyris arkelli Almeras 1970 dorsal 585We have another beautiful brachiopod this week from our friend Mr. Clive Champion in England. He sent me a surprise package of fossils earlier this year. They are very much appreciated by me and my students!

The specimen above is Cererithyris arkelli Almeras, 1970, from the Bathonian (Middle Jurassic) of Ranville, Calvados, France. (Ranville, by the way, was the first village liberated in France on D-Day.) It is a terebratulid brachiopod, which we have seen before on this blog from the Miocene of Spain and the Triassic of Israel. They have the classic brachiopod form. The image above shows the dorsal valve with the posterior of the ventral valve housing the round hole for the fleshy stalk (pedicle) it had in life.
2 Cererithyris arkelli Almeras 1970 sideThis is a side view of C. arkelli. The dorsal valve is on the top; the ventral valve on the bottom. It is from this perspective that brachiopods were called “lamp shells” because they resemble Roman oil lamps.
3 Cererithyris arkelli Almeras 1970 ventralThis is the ventral view of the specimen. These brachiopods are remarkably smooth.
4 William_Joscelyn_ArkellCererithyris arkelli was named by Almeras (1970) in honor of William Joscelyn Arkell (1904–1958). Arkell was an English geologist who essentially became Dr. Jurassic during the middle part of the 20th Century. I’m shocked to see that with all his publications, awards and accomplishments, he died when he was only 54 years old.

W.J. Arkell grew up in Wiltshire, the seventh child of a wealthy father (a partner in the family-owned Arkell’s Brewery) and artist mother (Laura Jane Arkell). He enjoyed nature as a child, winning essay contests on his observations of natural history in his native county and south on the Dorset coast. Arkell was unusually tall for his age (6 feet 4.5 inches by age 17.5 years in an unusually detailed note) and was considered to have “outgrown his strength”. Nature and writing were escapes from athletic events. He also published poems.

Arkell attended New College, Oxford University, intending to become an entomologist, but Julian Huxley was his tutor and he quickly adopted geology and paleontology. Eventually he earned a PhD at Oxford in 1928, concentrating his research on Corallian (Upper Jurassic) bivalves of England. As a side project, he published work on Paleolithic human skeletons from northern Egypt.

Oxford suited Arkell, so he stayed there as a research fellow, expanding his research to the entire Jurassic System of Great Britain, then Europe, and then the world. His work became the standard for understanding Jurassic geology and paleontology for decades.

After World War II (in which he served in the Ministry of Transport), Arkell took a senior research position at Trinity College and the Sedgwick Museum, Cambridge University, continuing his work on the Jurassic. He travelled often, including long stints in the Middle East. His health was never good, though, and he had a stroke in 1956, and died after a second stroke in 1958.

During his career Arkell received the Mary Clark Thompson Medal from the National Academy of Sciences in the USA, a Fellowship in the Royal Society, the Lyell Medal from the Geological Society of London, and the Leopold von Buch medal from the German Geological Society.

References:

Almeras, Y. 1970. Les Terebratulidae du Dogger dans le Mâconnais, le Mont dʼOr lyonnais et le Jura méridional. Étude systématique et biostratigraphique. Rapports avec la paléoécologie. Documents des Laboratoires de Géologie Lyon, 39, 3 vol.: 1-690.

Arkell, W.J. 1956. Jurassic Geology of the World. New York; Edinburgh: Hafner Publishing Co; Oliver & Boyd; 806 pp.

Cox, L.R. 1958. William Joscelyn Arkell 1904-1958. Biographical Memoirs of Fellows of the Royal Society 4: 1.

Rousselle, L. and Chavanon, S. 1981. Le genre Cererithyris (Brachiopodes, Terebratulidae) dans le Bajocien supérieur et le Bathonien des Hauts-Plateaux du Maroc oriental. CR somm. Soc. Géol France, 1981: 89-92.

Wooster’s Fossil of the Week: A thoroughly encrusted rugose coral from the Upper Ordovician of southeastern Indiana

April 22nd, 2016

1 Rugosan Exterior 123015It doesn’t look like much, this long lump of gray stone. With a close view you might pick up a hint of a bryozoan or two, but mostly we see rather shabby shades of grey. One of the coolest perks of being a geologist, though, is that you get to use a saw to cut rocks in half to see what’s inside. So that’s what I did with this specimen from the Whitewater Formation (Upper Ordovician) of southeastern Indiana at a site we’ve visited often.

2 Rugosan interior 123015In this cross-section we see first a long, cone-shaped fossil made of white calcite. It is the rugose coral Grewingkia canadensis, one of the most common fossils in the upper part of the Upper Ordovician. This coral in life would have stood upright like an ice cream cone, spreading the tentacles of its polyp to catch very small swimming prey (and maybe to do a bit of symbiotic photosynthesis). The polyp sat in the cup-like cavity on the expanded end of the cone. The coral evidently died on the Ordovician seafloor and toppled over to be encrusted on one side, presumably the one that faced upwards.

3 Coral Bryo Sed BryoThis is a closer view of the cross-section showing the encrustations on the rugose coral skeleton. The image is annotated below.

4 Coral Bryo Sed Bryo annotatedThe coral skeleton in the lower right was first encrusted by a trepostome bryozoan, which you can recognize by the tubes (zooecia) extending perpendicular from the substrate. This bryozoan is thickest on the upwards-facing surface of the coral, and it thins as it wraps around and then colonizes the cryptic space beneath (but not too far). This bryozoan is covered with a layer of sediment which appears to have rapidly cemented in place (a function of Calcite Sea geochemistry). The sediment then is encrusted by a another trepostome bryozoan with long zooecia and several layers.

5 Bryo Sed 123015In this closer view of the second bryozoan you can see that its base is irregular as it grew across the rough cemented sediment surface. In the middle of this view some of the bryozoan zooecia are occupied by dark spots known as brown bodies. These are likely the remains of bryozoan polypides (main parts of the individual zooids) that were sealed into their zooecia by some disturbance. In this case the whitish bit of sediment above the cluster may represent something that settled on the colony, stopping the growth of the zooecia below, and forcing those nearby to grow around it.

6 Borings 123015Moving down the coral skeleton away from its opening we come across borings drilled down through the coral skeleton (the white mass at the bottom of the image). The conical, large boring is filled with golden crystals of the mineral dolomite, which were formed long after burial. The shape of this boring is unusual. Typical borings in these corals have straight parallel sides, but this boring is cone-shaped. We’ll see if we can find more like it to get a better idea of its shape and distribution.

This week’s fossil, then, is a demonstration of the hidden wonders sometimes found in even the dullest of grey rocks!

 

Wooster’s Fossil of the Week: An atrypid brachiopod from the Devonian of Spain

April 15th, 2016

1 Atrypid dorsal Lr Couvinian M Dev El Pical Leon SpainOur featured fossil this week is another gift from brachiopod enthusiast Clive Champion of England. This fine specimen of Atrypa sp. was collected from the Middle Devonian (Lower Couvinian) exposed at El Pical, Leon, Spain. Atrypa is the emblematic genus of the atrypid brachiopods, which were common in the Devonian around the world. They were also prominent in the Late Ordovician of the Cincinnati region, as seen here and here. We are looking at the dorsal valve in the above view.

2 Atrypid spiraliaThis particular specimen is not notable for its special beauty (it is, after all, exfoliated and a bit misshapen), but for the view it provides of an internal feature: the spiral brachidium, sometimes called the spiralia. This was a ribbon of calcite that supported the lophophore, a tentacular apparatus used in filter-feeding. We see it here because the dorsal valve eroded away, exposing the inside of the shell. Our friends at The Falls of the Ohio have another specimen showing the spiral lophophore of an atrypid.

3 Atrypid ventralThis is a view of the flat ventral valve of our atrypid brachiopod. Inside during life the spiral lophophore would have looked like two springs perpendicular to the floor of this valve.

Thank you again, Clive, for the beautiful and inspiring brachiopods!

References:

Bose, R. 2013. A geometric morphometric approach in assessing paleontological problems in atrypid taxonomy, phylogeny, evolution and ecology, p. 1-9. In: Biodiversity and Evolutionary Ecology of Extinct Organisms. Springer, Berlin and Heidelberg.
Rudwick, M.J.S. 1960. The feeding mechanisms of spire-bearing fossil brachiopods. Geological Magazine 97: 369-383.

 

Dr. Patrick O’Connor gives the 35th annual Richard G. Osgood, Jr., Memorial lecture at Wooster

April 14th, 2016

1 Patrick GeoClub 041416WOOSTER, OHIO–It was our pleasure to host Dr. Patrick O’Connor of Ohio University, who presented the 35th Annual Richard G. Osgood, Jr., Memorial Lecture. The Osgood Lectureship was endowed in 1981 by the three sons of Dr. Osgood in memory of their father, who was an internationally known paleontologist at Wooster from 1967 to 1981. We have had outstanding speakers through this lectureship, and Dr. O’Connor was one of the best. He gave his public lecture last evening (“Cretaceous Terrestrial Vertebrates from Gondwana: Insights from Eastern Africa and Madagascar”) and then a more detailed presentation to our Geology Club this morning (shown in the image above). We all learned a great deal, and Dr. O’Connor was especially good at asking our students questions.

2 Dinosaur cast 041416In Geology Club today Dr. O’Connor brought casts of fossils (like the above Maastrichtian theropod from Madagascar) and actual fossils (like the Maastrichtian bird bones from Madagascar shown below).

3 Bird bones 041416We very much appreciated Dr. O’Connor’s diverse scientific skills and accomplishments, along with his enthusiasm and good humor. This is exactly what the Osgood Lectureship is about.

 

Wooster’s Fossil of the Week: A crinoid stem internal mold from the Lower Carboniferous of Ohio

April 8th, 2016

crinoid internal mold 1The Biology Department at The College of Wooster is in the midst of a massive move in advance of the construction of the new Ruth Williams Hall of Life Science. The staff has been combing through old specimen collections, giving away items they don’t need for teaching or research. Among the objects are occasional fossils they gave to the Geology Department. The above specimen is one of the most curious: a combination internal and external mold of a crinoid stem from the local Lower Carboniferous rocks.

crinoid internal mold lumen copyThis is a closer view of the fossil. It is a cylindrical cavity with faint rings in a regular distribution. (These are external molds of the individual crinoid columnals.) Suspended down the axis is a segmented pillar with a stellate cross-section. (This is the internal mold of the crinoid stem lumen, a central cavity that runs down the center of the stem.) It appears that an iron-rich cement (probably siderite) filled this lumen after the death of the crinoid. The stem fragment was enveloped in a siderite concretion and the calcite stem columnals dissolved away. This leaves us with both an external mold of the stem and an internal mold of its lumen.

Carb stem 1For comparison, this is a crinoid stem fragment in its original calcite. It was found in a local Carboniferous limestone.

Carb stem 2Here are cross-sections of the same stems showing sediment-filled stellate lumens in their centers.

Wooster’s Fossils of the Week: An encrusted and bored coral (maybe) from the Upper Ordovician of southeastern Indiana (Part II)

April 1st, 2016

6 Tetradium cavernLast week we looked at a dull gray rock found in a roadcut in southeastern Indiana near the town of Liberty. It is from the Saluda Formation (Upper Ordovician), a thin unit that was likely deposited in very shallow, lagoonal waters along the Cincinnati Arch. We know that it is primarily a platter formed by the mysterious fossil Tetradium, and that it is encrusted with a trepostome bryozoan that was infested by some sort of soft-bodied encruster on its surface, forming the trace fossil Catellocaula vallata. Now we’re examining the wonders revealed by cutting this rock in half. Above we see the surprising and spectacular geode that it is, with calcite crystals surrounding a dark cavity. Let’s see what the fossils look like when polished and magnified.

7 LongitudinalCrossTetraThe orangish, irregular patch in the lower half of the section above is the crystalline calcite near the center of the rock. The sediment-filled tubes in the top half are of the Tetradium specimen. Note that the walls of the tubes are blurry and indistinct, and that they fade and disappear into the calcite crystals below. This is apparently because the skeleton of Tetradium was made of aragonite, an unstable form of calcium carbonate. It is likely that the aragonitc, tubular skeleton of Tetradium dissolved away in the center of this encrusted mass, forming the cavity that later filled with secondary calcite crystals. The remaining tubes were apparently preserved as ghostly molds by infillings of calcitic mud that didn’t dissolve.

8 TetracrossIn this section we are cutting the Tetradium tubes perpendicularly, rather than the longitudinal cuts we saw before. The cross-sections of the tubes show a four-part symmetry, which adds to the mystery of this group. (This is where the name “Tetradium” comes from.) It has been called a chaetetid sponge (as in Termier and Termier, 1980); a “calcareous filamentous florideophyte [red] alga” (Steele-Petrovich 2009a, 2009b, 2011; she renamed it Prismostylus), and most commonly a coral of some sort (as in Wendt, 1989). I now know enough about chaetetids to say that it is not in that group. Chaetetid tubes are not aragonitic, do not show tetrameral symmetry, and have diaphragms (horizontal floors). The corals of the Ordovician are decidedly calcitic, not aragonitic, and they too have internal features in their tubes not seen here. The four-part symmetry, though, is something you see in the coral’s phylum, Cnidaria, so there is that vague resemblance. The red algal affinity strongly urged by Steele-Petrovich may be our best diagnosis for the place of Tetradium.

9 BryoTetra1On top of the tubes of Tetradium is the encrusting trepostome bryozoan. Its tubes (zooecia) are made of stable calcite, so they are well preserved compared to the aragonite tubes of Tetradium below it. Note that the bryozoan is made of two layers. One colony died or went into some sort of remission, and another of the same species grew across it. The second colony could have budded somewhere from the first colony.

10 BrownBodies122915This closer view of the bryozoan section shows details of the zooecia, including the horizontal diaphragms inside. The dark spots at the tops of the zooecia are brown bodies, the remains of polypides preserved here in clear calcite cement. (We’ve seen brown bodies before in this blog.) They likely represent some sort of traumatic event in the life of this bryozoan when this part of the colony essentially shut down and was covered with sediment.

11 Gypsumflower122915Finally, there is a mineralogy story here too! Attached to the dog-tooth calcite spar in the center of this geode is this tiny gypsum flower. The gypsum crystals are white and very delicate. The dark needles among them are mysterious. Dr. Meagen Pollock and her students will subject them to x-ray diffraction in her lab later this semester. I’ll report the results here.

It is a simple tool, the rock saw. For geologists and paleontologists, it is one of our essential instruments for discovery.

References:

Hatfield, C.B. 1968. Stratigraphy and paleoecology of the Saluda Formation (Cincinnatian) in Indiana, Ohio, and Kentucky. Geological Society of America Special Papers 95: 1-30.

Li, Q., Li, Y. and Kiessling, W. 2015. The first sphinctozoan-bearing reef from an Ordovician back-arc basin. Facies 61: 1-9.

Palmer, T.J. and Wilson, M.A. 1988. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31: 939-949.

Steele‐Petrovich, H M. 2009a. The biological reconstruction of Tetradium Dana, 1846. Lethaia 42: 297-311.

Steele‐Petrovich, H M. 2009b. Biological affinity, phenotypic variation and palaeoecology of Tetradium Dana, 1846. Lethaia 42: 383-392.

Steele-Petrovich, H.M. 2011. Replacement name for Tetradium DANA, 1846. Journal of Paleontology 85: 802–803.

Termier, G. and Termier, H. 1980. Functional morphology and systematic position of tabulatomorphs. Acta Palaeontologica Polonica 25: 419-428.

Wendt, J. 1989. Tetradiidae — first evidence of aragonitic mineralogy in tabulate corals. Paläontologische Zeitschrift 63: 177–181.

 

« Prev - Next »