Wooster’s Fossils of the Week: Bivalve escape trace fossils (Devonian and Cretaceous)

April 7th, 2017

It is time again to dip into the wonderful world of trace fossils. These are tracks, trails, burrows and other evidence of organism behavior. The specimen above is an example. It is Lockeia James, 1879, from the Dakota Formation (Upper Cretaceous). These are traces attributed to infaunal (living within the sediment) bivalves trying to escape deeper burial by storm-deposited sediment. If you look closely, you can see thin horizontal lines made by the clams as they pushed upwards. These structures belong to a behavioral category called Fugichnia (from the Latin fug for “flee”). They are excellent evidence for … you guessed it … ancient storms.
The specimens above are also Lockeia, but from much older rocks (the Chagrin Shale, Upper Devonian of northeastern Ohio). Both slabs show the fossil traces preserved in reverse as sediment that filled the holes rather than the holes themselves. These are the bottoms of the sedimentary beds. We call this preservation, in our most excellent paleontological terminology, convex hyporelief. (Convex for sticking out; hyporelief for being on the underside of the bed.)

The traces we know as Lockeia are sometimes incorrectly referred to as Pelecypodichnus, but Lockeia has ichnotaxonomic priority (it was the earliest name). Maples and West (1989) sort that out for us.
Uriah Pierson James (1811-1889) named Lockeia. He was one of the great amateur Cincinnatian fossil collectors and chroniclers. In 1845, he guided the premier geologist of the time, Charles Lyell, through the Cincinnati hills examining the spectacular Ordovician fossils there. He was the father of Joseph Francis James (1857-1897), one of the early systematic ichnologists.


James, U.P. 1879. The Paleontologist, No. 3. Privately published, Cincinnati, Ohio. p. 17-24.

Maples, C.G. and Ronald R. West, R.R. 1989. Lockeia, not Pelecypodichnus. Journal of Paleontology 63: 694-696.

Radley, J.D., Barker, M.J. and Munt, M.C. 1998. Bivalve trace fossils (Lockeia) from the Barnes High Sandstone (Wealden Group, Lower Cretaceous) of the Wessex Sub-basin, southern England. Cretaceous Research 19: 505-509.

[Originally published January 29, 2012]

Wooster’s Fossil of the Week: A scaphitid ammonite (Late Cretaceous of Mississippi)

February 24th, 2017

The beauty above is Discoscaphites iris (Conrad, 1858) from the Owl Creek Formation of Ripley, Mississippi. Megan Innis and I collected it during our expedition to the Cretaceous-Paleogene boundary in the southern United States last summer. It is a significant index fossil in biostratigraphy: the Discoscaphites iris Zone is the latest in the Cretaceous (the late Maastrichtian Stage). This animal lived in the final days of the Mesozoic Era just before the mass extinction 65.5 million years ago.

Discoscaphites iris is an ammonite, a type of extinct cephalopod mollusk related to the modern octopus, squid and nautilus. It had a planispirally-coiled shell with chambers divided from each other by complexly-folded walls. If you look closely near the top of the fossil above, you will see where the shell has flaked away revealing an internal mold of sediment and a peek at the folded walls inside. “Ammonite”, by the way, is a very old term for these fossils. Pliny the Elder himself used a variant of the name, which comes from the Egyptian god Amun with his occasional coiled ram’s horn headgear.

Reconstruction of an ammonite by Arthur Weasley (via Wikipedia).

Ammonite shells were made of the carbonate mineral aragonite. This is the mineral that makes many modern mollusk shells have prismatic colors, which we call nacreous. You may know it best as “mother of pearl” or as pearls themselves. Aragonite has an unstable crystal structure and so is not common in rocks older than a few million years. The original aragonite in our ammonite fossil is thus a bonus.

In an oddly topical note, Discoscaphites iris was recently found in the Upper Cretaceous of Libya, giving it a disjunct range from the US Gulf and Atlantic coasts to the Mediterranean coast of northern Africa (Machalski et al., 2009).


Machalski, M., Jagt, J.W.M., Landman, N.H. and Uberna, J., 2009. First record of the North American scaphitid ammonite Discoscaphites iris from the upper Maastrichtian of Libya. N. Jb. Geol. Paläont. Abh. 254: 373-378.

[Originally published April 24, 2011]

Wooster’s Fossil of the Week: Ammonite septa from the Upper Cretaceous of South Dakota

January 27th, 2017

This week we have an ammonite from the Pierre Shale (Upper Cretaceous, Campanian-Maastrichtian) of southwestern South Dakota. It was collected on a wonderful field expedition in June 2008 with my friend Paul Taylor (The Natural History Museum, London) and my student John Sime. Ammonites are extremely common in this interval, but I like this one because it is broken in such a way to expose its complex internal walls, called septa. We are looking at a cross-section of a coiled ammonite showing an early whorl in the upper left surrounded by a later whorl. The septa are fluted at their margins as they meet the outer wall. The wiggly boundary line between a septum and the outer wall is called a suture.

Ammonite septa are remarkably complex, showing fractal patterns. Why did these animals, extinct for 66 million years, evolve such complexity in their septa? This is a hotly debated topic in paleontology. The most popular explanations include strengthening the walls of the shell to resist hydrostatic pressure at depth, buttressing the shell against the crushing pressures of biting predators, and increasing soft-tissue (mantle) surface areas for physiological advantages. Klug and Hoffman (2015) have an excellent summary of these ideas. Lemanis et al. (2016) have a fascinating mathematical study that suggests the answer in many cases complex sutures “seem to increase resistance to point loads, such as would be from predators.”

The astonishing English polymath Robert Hooke (1635-1703) took considerable interest in ammonites and their complicated septa. We have no contemporary images of him, but based on descriptions, Rita Greer painted the above portrait in 2004. Hooke’s life was as complex as the suture patterns he studied, so I leave you to other sources on him. Note in the portrait above, though, the ammonite!

These are drawings by Robert Hooke of ammonites and their suture patterns (from Kusukawa, 2013). It is a single image mirror-reversed. Beautiful.


Derham W. 1726. Philosophical experiments and observations of the late eminent Dr. Robert Hooke, S.R.S. and Geom. Prof. Gresh., and other eminent virtuoso’s in his time. London: Derham.

Garcia-Ruiz, J.M., Checa, A. and Rivas, P. 1990. On the origin of ammonite sutures. Paleobiology 16: 349-354.

Klug, C. and Hoffmann, R. 2015. Ammonoid septa and sutures. In: Ammonoid Paleobiology: From anatomy to ecology (p. 45-90). Springer Netherlands.

Kusukawa, S. 2013. Drawings of fossils by Robert Hooke and Richard Waller. Notes Rec. R. Soc., 67: 123-138.

Lemanis, R., Zachow, S. and Hoffmann, R. 2016. Comparative cephalopod shell strength and the role of septum morphology on stress distribution. PeerJ 4:e2434

Wooster’s Fossil of the Week: A craniid brachiopod from the Upper Cretaceous of The Netherlands

May 6th, 2016

1 Isocrania costata Sowerby 1823 double 2 smThese striking little brachiopods are gifts from Clive Champion, a generous Englishman with whom I occasionally exchange packets of fossils. In January I received a surprise box with lots of delicious little brachs, including the two shown above. I remember this type well from a field trip I had to the Upper Cretaceous of The Netherlands.
2 Isocrania costata Sowerby 1823 double 1 smHere we see the reverse sides of the shells at the top. These are most likely dorsal valves of Isocrania costata Sowerby, 1823, from the Lichtenberg Horizon, Upper Maastrichtian (Upper Cretaceous) of the ENCI Quarry near Maastricht, The Netherlands. It is possible they are the closely-related species Isocrania sendeni Simon, 2007, but we don’t have enough material to sort this out.
4 Surlyk 1973 fig 2 copyCraniid brachiopods usually live out their lives attached to hard substrates, as with this Ordovician example. This species of Isocrania, however, was only attached to shelly debris on the seafloor for a short time, outgrowing its substrate early and then living free in the chalky sediment. The above reconstruction image is Figure 2 from Surlyk (1973).

Christian Emig (2009) has a bit of folklore about Isocrania. In medieval Sweden these fossils were called “Brattingsborg pennies” for their size, shape and the face-like image on their interiors. Don’t see the face? Check this out from Emig (2009):
5 Ventral C craniolaris fig 6 SurlykThe “eyes” in this ventral valve are large adductor muscle scars, and the “mouth” and “nose” are a smaller set. Here is one of the “Brattingsborg pennies” legends Emig (2009) relates —

“… at the beginning of the 13th century the archbishop Anders Sunesen spent his last days on the island of Ivö, in his own castle of which the cellar was about 2 km southeast of the castle. In 1221, subjected to the terminal stages of leprosy, he spent his last days on the island. One day he was informed that warriors had stolen a large sum of money from the Brattingsborg castle. They spent that night gambling and carousing in the cellar. The archbishop cursed this money and the following morning the warriors were stunned to find that the coins had turned into stones with a laughing death’s-head on them.”

Thanks for starting us on this trip with your gift, Clive!
3 Isocrania costata Sowerby 1823 sm

Emig, C. 2009. Nummulus brattenburgensis and Crania craniolaris (Brachiopoda, Craniidae). Carnets de Géologie/Notebooks on Geology, Brest, Article, 8.

Hansen, T., and Surlyk, F. 2014. Marine macrofossil communities in the uppermost Maastrichtian chalk of Stevns Klint, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 323-344.

Simon, E. 2007. A new Late Maastrichtian species of Isocrania (Brachiopoda, Craniidae) from The Netherlands and Belgium. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre 77: 141-157.

Surlyk, F. 1973. Autecology and taxonomy of two Upper Cretaceous craniacean brachiopods. Bulletin of the Geological Society of Denmark 22: 219-242.

Dr. Patrick O’Connor gives the 35th annual Richard G. Osgood, Jr., Memorial lecture at Wooster

April 14th, 2016

1 Patrick GeoClub 041416WOOSTER, OHIO–It was our pleasure to host Dr. Patrick O’Connor of Ohio University, who presented the 35th Annual Richard G. Osgood, Jr., Memorial Lecture. The Osgood Lectureship was endowed in 1981 by the three sons of Dr. Osgood in memory of their father, who was an internationally known paleontologist at Wooster from 1967 to 1981. We have had outstanding speakers through this lectureship, and Dr. O’Connor was one of the best. He gave his public lecture last evening (“Cretaceous Terrestrial Vertebrates from Gondwana: Insights from Eastern Africa and Madagascar”) and then a more detailed presentation to our Geology Club this morning (shown in the image above). We all learned a great deal, and Dr. O’Connor was especially good at asking our students questions.

2 Dinosaur cast 041416In Geology Club today Dr. O’Connor brought casts of fossils (like the above Maastrichtian theropod from Madagascar) and actual fossils (like the Maastrichtian bird bones from Madagascar shown below).

3 Bird bones 041416We very much appreciated Dr. O’Connor’s diverse scientific skills and accomplishments, along with his enthusiasm and good humor. This is exactly what the Osgood Lectureship is about.


A Shabbat trip to Be’er Ada in the southern Negev

March 19th, 2016

1 Road to Beer AdaMITZPE RAMON, ISRAEL — Yoav Avni and I have a tradition on Shabbat. We drive somewhere to explore interesting geology and history unconnected to current projects. It’s not really work — it’s geotourism. We are, though, always talking about new ideas. Today we traveled south of Mitzpe Ramon into the “deep desert” of the Arava below the Negev Highlands.

2 MR view to JordanThe morning view south across Makhtesh Ramon was spectacular. It isn’t conveyed very well through an image only 585 pixels wide, but it is a perspective of unusual clarity. The purple streak at the top represents mountains in western Jordan. The haze just below them is in the Arava Valley. We are looking across most of the Negev.

3 Acacia grove Beer AdaOur mission today was to visit Be’er Ada (Bir Abu ‘Auda), an historic well, and the geology around it. (N30.32229°, E34.90701°, if you’re following at home.) The top image on this post is a view from the road to the well. Just above is a grove of acacia trees near the well. The abundance of these trees, and their good health, is an indication of accessible water.

4 Yoav at Beer AdaHere is Yoav peering down into Be’er Ada. (“Be’er” means well.) It is at least twenty meters deep. The base is filled with silt, so it will have to be dug out to supply water again. This well is thousands of years old and has been a critical watering spot in the Negev for traveling groups. The next nearest well is to the east about 40 km away. Another 40 km or so to the west is another well. Be’er Ada was active as late as the 1950s, and likely had sporadic use afterwards. The water here accumulates on the impermeable clays of the Taqiya Formation (Paleocene).

5 Acacia outcrop view 031916This is a view from near Be’er Ada to the main geological interest for me: the the orangish Hazeva Formation (Miocene) topped unconformably by the gray Pleistocene Arava Formation. We will spend much more intimate time with these units in the next post. Note the graceful acacia trees.

6 Beer Ada faultThis area is next to a complex fault system. On the left is a down-dropped block of Hazeva and Arava, with Cretaceous rocks on the right. The fault is also part of the reason for the subterranean water resources at Be’er Ada.

7 Ada profileIn the middle of the image is an example of the pareidolia so common in stark landscapes. Some people see a face in profile. Apparently tour guides like to call this the head of “Ada” for whom the well was named. However, there never was such a woman!

Note the excellent weather in these images. A perfect Negev day! Thank you to Yoav for being such a generous host.

Wooster Geologist Returns to Israel: A visit to the Cretaceous Ora Formation

March 13th, 2016

1 Ora at GerofitMITZPE RAMON, ISRAEL — This is my 14th visit to Israel. I’ll be spending ten days here doing fieldwork in places I’ve come to love: Makhtesh Ramon, Makhtesh Gadol, and the Aravah Valley. I’ve returned to complete some Jurassic studies, explore a bit of the Cretaceous, and collect specimens for future Independent Study projects by Wooster geology majors. I’ve also come to work with an excellent Israeli graduate student, Yael Leshno. I’ll introduce her and her project later in this blog.

The top image is of my first field site of the trip: an exposure of the Ora Formation (Upper Cretaceous, Turonian) at Gerofit Junction at the edge of the Aravah Valley in southern Israel. It is a fun location because you can eat lunch while gazing at mountains and valleys in nearby Jordan. Of course, since it is the junction of routes 40 and 90, it’s a noisy place. The Ora Formation is well exposed north of the road junction.

2 Ora Gerofit faultThis outcrop is significantly faulted, so you must pay close attention to the stratigraphy to work your way through it. This is a low-angle normal fault. Note that it does not cut the topmost units. All sorts of tectonic situations are possible here next to the Dead Sea Transform system. Dr. Judge would love these structures! Me, not so much.

3 Ora limestone 031316Parts of the Ora Formation are very fossiliferous. This is a platy limestone rich in small oysters. Other beds have zillions of tiny gastropods, still others with plant and terrestrial arthropod remains. I came here ot find bryozoans, but found only a single specimen encrusting an oyster.

4 Mishhash view 031316On the way back to Mitzpe Ramon, I stopped at another exposure of the Ora Formation just south of Makhtesh Ramon. It is a place very familiar to several Wooster students, especially Andrew Retzler and Micah Risacher who did much of their I.S. field research on those steep slopes ahead. We often stopped to look at the Ora exposed in the wadis. The view is a bit hazy because of the typical Saharan dust that moves into the Negev in the spring.

5 Ora hardground MRThere is a fantastic bivalve-bored carbonate hardground in the Ora Formation at this second locality. It is especially well exposed now, probably because of winter floods washing away the soft sediment covering it.

6 Ora oysters 031316One amazing bed, about a half-meter thick, is packed with thin-shelled oysters. Every time I visit I look for encrusting bryozoans here, but none have appeared. They’ve got to be there!

It was a good start for these few days of fieldwork. I’m now acclimated, my geological eyes are tuned, and I’m ready for tomorrow’s fieldwork in the Matmor Formation of Makhtesh Gadol — the main event!

Team Yorkshire gets all geochemical

September 20th, 2015

1 MMlab091915BRYN MAWR, PENNSYLVANIA–When we last saw Mae Kemsley (’16) and Meredith Mann (’16) in this blog, they were celebrating the end of their Senior Independent Study summer fieldwork on the coast of North Yorkshire, England. This weekend the three of us traveled to Bryn Mawr College and the geochemistry lab of Professor Pedro Marenco to start the geochemical analysis phase of our research. We learned a lot under Pedro’s kind and generous direction.

2 CW715 090315 belemnitesBoth Mae and Meredith have belemnite fossils in their field collections. Meredith has just a few from the Passage Beds Member of the Coralline Oolite Formation (Upper Jurassic, Oxfordian); Mae has dozens from the Speeton Clay (Lower Cretaceous). A belemnite was a marine squid-like cephalopod that had a hard, bullet-shaped internal structure called a guard (shown above). These guards are made of almost pure calcite which took in trace elements from the seawater as they grew. The carbon and oxygen isotopes in their calcite crystals also reflect the isotopic composition of the seawater. These fossils are thus geochemical repositories from ancient seas. We are interested in what our belemnites tell us about the ambient chemical conditions in their environments, which in turn are proxies we can use to interpret paleotemperatures and other factors.

3 Belemnite cut sampleIn our Wooster geology labs we cut small disks from a series of belemnites, then polished the surfaces and cleaned them thoroughly. We brought these prepared disks to Pedro’s lab in Bryn Mawr.

4 Drilling 091915Mae is here in the Bryn Mawr petrography lab using a small drill to excavate fine calcite powder from the belemnite disks. This powder, measured in fractions of a gram, was then collected into sheets of weighing paper, folded like origami and taped to keep it in place.

5 Weighing091915Mae and Meredith are here weighing the powder samples with Pedro’s fancy balances. Each plastic sample vial had to be paced through an ion generator to reduce static charge and improve measurements to the microgram. A lot of chemwipes, weighing sheets, and gloves are used in the process to reduce contamination.

6 Mae tubes 091915After dissolving the powder samples in acid, and then diluting the liquids in carefully-measured ways, we finally ended up with these precious tubes filled with essence de belemnite. We learned how much work goes into preparation of geochemistry samples — a lot!

7 ICP MS 0091915The liquid samples are now ready for analysis in a device called an ICP-MS, which stands for Inductively Coupled Plasma Mass Spectrometer. This is the process and equipment Wooster geologists Mary Reinthal (’16) and Chloe Wallace (’17) described in their recent geochemistry blogpost. We’re doing the same thing: assessing the trace elements in our samples. Pedro will later run our samples through this magic machine and give us the results. We have a duplicate set of drilled belemnite powders to send to another lab for carbon and oxygen isotope analysis.

8 Katherine Pedro 091915Thank you very much to our Bryn Mawr hosts Dr. Katherine Nicholson Marenco (’03) and Dr. Pedro Marenco. We are very much looking forward to our continuing collaboration. Thanks as well to Dr. Paul Taylor of the Natural History Museum in London who was our Essential Companion in the field.

Wooster’s Fossil of the Week: A calcareous sponge from the Lower Cretaceous of England

July 24th, 2015

Raphidonema faringdonense 070715a 585One of my favorite fossil localities is a gravel pit in Oxfordshire, England. Gravel pits are not usually good for fossil collecting given their coarse nature and high-energy deposition, but the Lower Cretaceous (Aptian) Faringdon Sponge Gravels are special. They are tidal gravels sitting unconformably over Jurassic rocks that have an extraordinary diversity and abundance of marine fossils, both from the Cretaceous and reworked from the Jurassic below. I have previously described in this blog bored cobbles, bryozoans, ammonites and a plesiosaur vertebra from this unit. Above is one of the most characteristic fossils from Faringdon, the calcareous sponge Raphidonema faringdonense (Sharpe, 1854).
Raphidonema faringdonense 070715b 585This is a view of the upper surface of this sponge. Like most sponges it was a filter-feeder sitting stationary on the seafloor. This one was probably attached to a cobble in the gravel. It is in the Class Calcarea because it has a fused network of calcitic spicules making up its skeleton. This is why it has remained a very resistant, rigid object long after death. It probably spent some time rolling around in those gravels with the tidal currents.
Sophie Faringdon 2007The Faringdon Sponge Gravels are a member of the Faringdon Sand Formation. They are cross-bedded gravels that have been mined for construction purposes since Roman times. Above is Wooster Geologist Sophie Lehmann (as a student) when she and I visited one of the gravel pits in 2007. For the record, this sponge comes from the Red Gravel, 5.5-8.5 meters above the disconformity with Oxfordian limestones, in the Wicklesham gravel pit on the southeast edge of Faringdon, Oxfordshire (51.647112° N, 1.585094° W).

after Maull & Polyblank, photogravure, circa 1856

Daniel Sharpe FRS (1806-1856) named Raphidonema faringdonense in 1854. He was born in Marylebone, Middlesex, England. His mother died shortly after his birth and he was raised by his uncle Samuel Rogers, a literary figure of some merit. He entered the mercantile business as an apprentice when he was 16, and he stayed connected with trading the rest of his life. His first research as a geologist (and this was very early in the discipline of geology) was examining geological structures around Lisbon, Portugal. He then studied the strata of north Wales and the Lake District of England. Sharpe was an early opponent of Adam Sedgwick in a dispute over the Cambrian, which brought him some notoriety among English geologists. His most prominent geological work was sorting out what rock cleavage meant in regard to stress and strain, using distorted fossils as part of his evidence. He died as the result of a riding accident in 1856, shortly after he had been elected president of the Geological Society of London.

Sorting out the taxonomic history of Raphidonema faringdonense is more complex than I would have expected for such a simple fossil. I’m using the most common version of the name, but we also see “farringdonense“, “faringdonensis” and farringdonensis“. (I know. Who worries about such things?)
Manon farringdonense Sharpe figuresManon farringdonense description 1854Above are Sharpe’s original figures of Raphidonema faringdonense, along with his description (and the nice bryozoan Reptoclausa hagenowi below). We can see that he spelled the species name with a double r in keeping with a common spelling of the village’s name then. I don’t know when we lost one of those letters.

Just to add to the complexity, Raphidonema is also the genus name of a filamentous green alga. Since it is not an animal, though, there is no legal problem with having the name also refer to a sponge. (There should be a rule against such homonymy, but there’s not.)


Austen, R.A.C. 1850. On the age and position of the fossiliferous sands and gravels of Faringdon. Quarterly Journal of the Geological Society of London 6: 454-478.

Lhwyd, E. 1699. Lithophylacii Britannici Ichnographia. 139 pp. London.

Pitt, L.J. and Taylor, P.D. 1990. Cretaceous Bryozoa from the Faringdon Sponge Gravel (Aptian) of Oxfordshire. Bulletin of the British Museum, Natural History. Geology 46: 61-152.

Sharpe, D. 1854. On the age of the fossiliferous sands and gravels of Farringdon and its neighbourhood. Quarterly Journal of the Geological Society of London 10: 176-198.

Wilson, M. A. (1986). Coelobites and spatial refuges in a Lower Cretaceous cobble-dwelling hardground fauna. Palaeontology, 29(4), 691-703.

Wooster’s Fossil of the Week: A small lobster from the Lower Cretaceous of North Yorkshire, England

July 10th, 2015

Meyeria ornata fullMae Kemsley (’16) found this little beauty during her Independent Study fieldwork last month on the Speeton Cliffs of North Yorkshire. It is Meyeria ornata (Phillips, 1829), a decapod of the lobster variety, from the Speeton Clay. It is relatively common in Bed C4, so much so that it is referred to as “the shrimp bed”. Mae is the only one of our team of four who found one, though, so it is special to us. The above is a lateral view, with the head to the left and abdomen on the top of this small concretion.
Dorsal Meyeria ornataHere is a dorsal view looking down on the abdominal segments.
Screen Shot 2015-07-01 at 9.14.03 PMSimpson and Middleton (1985, fig. 1b) have this excellent diagram of Meyeria ornata in life position. The scale bar is one centimeter. “Details of pleopods, third maxillipeds and first antennae of M. ornata unknown. Dashed line represents length of extended abdomen. Symbols: a branchiocardiac groove; c postcervical groove; e cervical groove; m3 third maxilliped; p pereiopod; pi pleopod; t telson; u uropods; x ‘x’ area; r rostrum; al first antennae; a2 second antennae; ar antennal ridge; sr suborbital ridge; 1,2,3. branchial ridges.”

According to Simpson and Middleton (1985), Meyeria ornata actively crawled about on the muddy substrate like modern lobsters. They did not have true chelae (large claws), so they were likely scavengers in the top layers of the sediment rather than predators.

3 Mae working 060915Mae at work.


Charbonnier, S., Audo, D., Barriel, V., Garassino, A., Schweigert, G. and Simpson, M. 2015. Phylogeny of fossil and extant glypheid and litogastrid lobsters (Crustacea, Decapoda) as revealed by morphological characters. Cladistics 31: 231-249.

M’Coy F. 1849. On the classification of some British fossil Crustacea with notices of new forms in the University Collection at Cambridge. Annals and Magazine of Natural History, series 2, 4, 161-179.

Phillips, J. 1829. Illustrations of the geology of Yorkshire, Part 1. The Yorkshire coast: John Murray, London, 184 p.

Simpson, M.I. and Middleton, R. 1985. Gross morphology and the mode of life of two species of lobster from the Lower Cretaceous of England: Meyeria ornata (Phillips) and Meyerella magna (M’Coy). Transactions of the Royal Society of Edinburgh: Earth Sciences 76: 203-215.

Next »