Wooster’s Fossil of the Week: A calcareous sponge from the Lower Cretaceous of England

July 24th, 2015

Raphidonema faringdonense 070715a 585One of my favorite fossil localities is a gravel pit in Oxfordshire, England. Gravel pits are not usually good for fossil collecting given their coarse nature and high-energy deposition, but the Lower Cretaceous (Aptian) Faringdon Sponge Gravels are special. They are tidal gravels sitting unconformably over Jurassic rocks that have an extraordinary diversity and abundance of marine fossils, both from the Cretaceous and reworked from the Jurassic below. I have previously described in this blog bored cobbles, bryozoans, ammonites and a plesiosaur vertebra from this unit. Above is one of the most characteristic fossils from Faringdon, the calcareous sponge Raphidonema faringdonense (Sharpe, 1854).
Raphidonema faringdonense 070715b 585This is a view of the upper surface of this sponge. Like most sponges it was a filter-feeder sitting stationary on the seafloor. This one was probably attached to a cobble in the gravel. It is in the Class Calcarea because it has a fused network of calcitic spicules making up its skeleton. This is why it has remained a very resistant, rigid object long after death. It probably spent some time rolling around in those gravels with the tidal currents.
Sophie Faringdon 2007The Faringdon Sponge Gravels are a member of the Faringdon Sand Formation. They are cross-bedded gravels that have been mined for construction purposes since Roman times. Above is Wooster Geologist Sophie Lehmann (as a student) when she and I visited one of the gravel pits in 2007. For the record, this sponge comes from the Red Gravel, 5.5-8.5 meters above the disconformity with Oxfordian limestones, in the Wicklesham gravel pit on the southeast edge of Faringdon, Oxfordshire (51.647112° N, 1.585094° W).

after Maull & Polyblank, photogravure, circa 1856

Daniel Sharpe FRS (1806-1856) named Raphidonema faringdonense in 1854. He was born in Marylebone, Middlesex, England. His mother died shortly after his birth and he was raised by his uncle Samuel Rogers, a literary figure of some merit. He entered the mercantile business as an apprentice when he was 16, and he stayed connected with trading the rest of his life. His first research as a geologist (and this was very early in the discipline of geology) was examining geological structures around Lisbon, Portugal. He then studied the strata of north Wales and the Lake District of England. Sharpe was an early opponent of Adam Sedgwick in a dispute over the Cambrian, which brought him some notoriety among English geologists. His most prominent geological work was sorting out what rock cleavage meant in regard to stress and strain, using distorted fossils as part of his evidence. He died as the result of a riding accident in 1856, shortly after he had been elected president of the Geological Society of London.

Sorting out the taxonomic history of Raphidonema faringdonense is more complex than I would have expected for such a simple fossil. I’m using the most common version of the name, but we also see “farringdonense“, “faringdonensis” and farringdonensis“. (I know. Who worries about such things?)
Manon farringdonense Sharpe figuresManon farringdonense description 1854Above are Sharpe’s original figures of Raphidonema faringdonense, along with his description (and the nice bryozoan Reptoclausa hagenowi below). We can see that he spelled the species name with a double r in keeping with a common spelling of the village’s name then. I don’t know when we lost one of those letters.

Just to add to the complexity, Raphidonema is also the genus name of a filamentous green alga. Since it is not an animal, though, there is no legal problem with having the name also refer to a sponge. (There should be a rule against such homonymy, but there’s not.)

References:

Austen, R.A.C. 1850. On the age and position of the fossiliferous sands and gravels of Faringdon. Quarterly Journal of the Geological Society of London 6: 454-478.

Lhwyd, E. 1699. Lithophylacii Britannici Ichnographia. 139 pp. London.

Pitt, L.J. and Taylor, P.D. 1990. Cretaceous Bryozoa from the Faringdon Sponge Gravel (Aptian) of Oxfordshire. Bulletin of the British Museum, Natural History. Geology 46: 61-152.

Sharpe, D. 1854. On the age of the fossiliferous sands and gravels of Farringdon and its neighbourhood. Quarterly Journal of the Geological Society of London 10: 176-198.

Wilson, M. A. (1986). Coelobites and spatial refuges in a Lower Cretaceous cobble-dwelling hardground fauna. Palaeontology, 29(4), 691-703.

Wooster’s Fossil of the Week: A small lobster from the Lower Cretaceous of North Yorkshire, England

July 10th, 2015

Meyeria ornata fullMae Kemsley (’16) found this little beauty during her Independent Study fieldwork last month on the Speeton Cliffs of North Yorkshire. It is Meyeria ornata (Phillips, 1829), a decapod of the lobster variety, from the Speeton Clay. It is relatively common in Bed C4, so much so that it is referred to as “the shrimp bed”. Mae is the only one of our team of four who found one, though, so it is special to us. The above is a lateral view, with the head to the left and abdomen on the top of this small concretion.
Dorsal Meyeria ornataHere is a dorsal view looking down on the abdominal segments.
Screen Shot 2015-07-01 at 9.14.03 PMSimpson and Middleton (1985, fig. 1b) have this excellent diagram of Meyeria ornata in life position. The scale bar is one centimeter. “Details of pleopods, third maxillipeds and first antennae of M. ornata unknown. Dashed line represents length of extended abdomen. Symbols: a branchiocardiac groove; c postcervical groove; e cervical groove; m3 third maxilliped; p pereiopod; pi pleopod; t telson; u uropods; x ‘x’ area; r rostrum; al first antennae; a2 second antennae; ar antennal ridge; sr suborbital ridge; 1,2,3. branchial ridges.”

According to Simpson and Middleton (1985), Meyeria ornata actively crawled about on the muddy substrate like modern lobsters. They did not have true chelae (large claws), so they were likely scavengers in the top layers of the sediment rather than predators.

3 Mae working 060915Mae at work.

References:

Charbonnier, S., Audo, D., Barriel, V., Garassino, A., Schweigert, G. and Simpson, M. 2015. Phylogeny of fossil and extant glypheid and litogastrid lobsters (Crustacea, Decapoda) as revealed by morphological characters. Cladistics 31: 231-249.

M’Coy F. 1849. On the classification of some British fossil Crustacea with notices of new forms in the University Collection at Cambridge. Annals and Magazine of Natural History, series 2, 4, 161-179.

Phillips, J. 1829. Illustrations of the geology of Yorkshire, Part 1. The Yorkshire coast: John Murray, London, 184 p.

Simpson, M.I. and Middleton, R. 1985. Gross morphology and the mode of life of two species of lobster from the Lower Cretaceous of England: Meyeria ornata (Phillips) and Meyerella magna (M’Coy). Transactions of the Royal Society of Edinburgh: Earth Sciences 76: 203-215.

Link to posts from Wooster Geologists in the United Kingdom in June 2015

June 29th, 2015

11 Mae Meredith Filey BriggI spent 25 days in England, Scotland and Wales this month, 12 of them with these two happy Senior Independent Study students, Mae Kemsley (’16) and Meredith Mann (’16) — dubbed “Team Yorkshire”. We had to delay our blog posts until today. You can see all of them by clicking the UK2015 tag. It was a spectacular expedition. Thanks again to Paul Taylor, Jen Loxton, Joanne Porter, Tim Palmer, Patrice Reeder and Suzanne Easterling for the parts they played in this adventure. Thank you as well to Mae and Meredith who were not only sharp field paleontologists, they were great companions as well. They are shown above on the tip of Filey Brigg in North Yorkshire. (N54.21560°, W00.25842°; Google Earth image below. Cool study site!)

Screen Shot 2015-06-29 at 11.47.54 AM

Team Yorkshire finishes its fieldwork

June 15th, 2015

1 Speeton Clay at Reighton Sands 061515SCARBOROUGH, ENGLAND (June 15, 2015) — It is difficult to believe that yesterday was so cold and wet. Today was beautiful on the Yorkshire Coast. Mae Kemsley (’16), Meredith Mann (’16) and I traveled to Reighton Sands for one last look through Mae’s outcrops. The tide was very low and the sunshine abundant, so we took lots of images and collected another bag of fossils. Above is the Speeton Clay (Lower Cretaceous). It rarely looks so good in photographs.

2 Morning commute 061515A scene from our morning commute from Scarborough. We like sitting in the top front of the double-decker bus.

3 SS Laura boilersThe tide was low enough to expose the pair of boilers from the SS Laura. You may recall this Austro-Hungarian cargo ship ran aground here on November 21, 1897. These heavy and resistant boilers have served as coastal landmarks for over a century.

4 Mussels Barnacles on boilersThe SS Laura boilers are also a significant hard substrate for attaching mussels and barnacles.

5 Flamborough Head 061515The white chalk cliffs of northern Flamborough Head were especially beautiful today. I wish there was a way to record the sounds of thousands of circling seabirds.

6 Red Chalk outcrop 061515We visited an outcrop of the Red Chalk (Hunstanton Formation, Lower-Upper Cretaceous) one last tme to collect more belemnites for Mae’s future analytical work.

7 Red Chalk fossils 061515We found quite a few Neohibolites, along with a coiled serpulid or two.

8 Speeton belemnites in placeThen it was back to the gray Speeton Clay. After yesterday’s rain, the belemnites seemed very easy to find. Today we were after belemnites that had borings and/or encrusters.

9 Mae Meredith frisbee SpeetonMae and Meredith took advantage of the beach to toss a frisbee around. They are both members of Wooster’s superb Ultimate Frisbee team.

10 Speeton sand patterns IIWe walked the long arc of Filey Bay to Filey. I was fascinated with the patterns in the sand left by the receding tide.

11 Speeton sand patterns IThose same sand patterns with a stone producing interference.

12 Filey 061515The seaside portion of Filey, viewed from the south.

13 Last view of Filey BriggAnd finally a view of Filey Brigg from Filey. We were very pleased to have our last field day such a pleasant one. We hope we’ve prepared the way for future Wooster Independent Study projects in this beautiful part of the world.

Rain delay in Yorkshire. Time for sample management.

June 13th, 2015

Sample management 061315SCARBOROUGH, ENGLAND (June 13, 2015) — Our good fortune with the weather finally ended with a steady downpour this morning. Since it was during an advantageous tide, and I didn’t want us slipping around on wet intertidal boulders at Filey Brigg, we cancelled the day’s fieldwork. As generations of Wooster paleontologists know, this gives us time for Sample Management. We went through all that we collected, washed each fossil in my bathroom sink, and dried the lot on the hotel towels so kindly provided to us. It was the first time I got a good luck at many of the specimens the students collected, so it was rather fun. We then rebagged and labelled everything for the trip back home. Mae and Meredith have put together a nice collection for their studies. We have two more days of fieldwork to finish collecting for Meredith’s project.

Another gorgeous day on the Yorkshire coast

June 10th, 2015

Dismantled pillbox Filey BeachSCARBOROUGH, ENGLAND (June 10, 2015) — We certainly can’t complain about the weather for our fieldwork in Yorkshire this year. Today was spectacular with blue skies and cool sea breezes. It made the long beach hikes very pleasant.

1 Mae on Speeton 061015This was our first day without our English colleague (and Yorkshire native) Paul Taylor, so we were on our own for transportation. We figured out the bus system, though, and made it to the Lower Cretaceous Speeton Clay at Reighton Sands in good time. Here is the last view you’ll have of Mae Kemsley (’16) working on her outcrops of this gray, mushy unit. We collected sediment samples this morning, along with a few last fossils.

2 Meredith on Speeton 061015Here is Meredith Mann (’16) doing the same. We finished all of our fieldwork for Mae’s project by 10:30 a.m., so we could make a long beach hike from the Speeton Cliffs northwards to Filey.

3 Meredith waiting on tide

4 Mae waiting on tideWe hiked as far as we could on Filey Brigg, but had to chill because our sites were still cut off by the high tide. Waiting for a tide to drop is tedious, but the students had plenty of patience.

5 Thalassinoides 061015We reached the large slabs of Hambleton Oolite Member (Upper Jurassic, Oxfordian) with Thalassinoides burrows to begin Meredith’s data collection. These are impressive trace fossils, with numerous shelly fossils in the surrounding matrix. We took reference photos and collected what we could. Unfortunately only three slabs met our criteria for measurements, so we moved to a unit exposed just below the Hambleton.

6 Cannonball concretionsOn the north side of Filey Brigg there are these large “cannonball” concretions, which were excellent stratigraphic markers for us. They are in the Saintoft Member of the Lower Calcareous Grit Formation. They told us that the units above were the Passage Beds Member of the Coralline Oolite Formation.

7 Passage Beds 061015Mae and Meredith are here collected fossils from the Passage Beds above the concretions. This unit is interesting to us because it contains shelly debris that was apparently washed onto shore during storms. These shells are often heavily encrusted with oysters and serpulids. Such sclerobionts have been little studied in this part of the section.

8 MMbus 061015On our sunny ride home the students sat in the front of the top section of our double-decker bus. Not a bad commute for a day’s work!

 

Return to the Speeton Clay

June 9th, 2015

1 Mae on Speeton 060915SCARBOROUGH, ENGLAND (June 9, 2015) — Team Yorkshire returned to the Speeton Clay today to begin the fieldwork for Mae Kemsley’s Senior Independent Study project. Mae chose to work on the incredible diversity of belemnites found in this Lower Cretaceous unit. There are two aspects to her study: the paleoecology of the belemnites themselves, and the taphonomy of their distinctive bullet-shaped calcitic rostra (guards). We hope that Mae will be able to do some stable isotope work to help elucidate the paleoenvironments these pelagic creatures lived in. Oxygen isotopes in particular may indicate the seawater temperatures when the belemnites were forming their skeletons. The Speeton Clay has faunas from alternating Boreal (northern, colder) and Tethyan (southern) regions, so this will be interesting.

2 Middle Cliff SpeetonHere is the Speeton Clay forming the Middle Cliff along the shoreline. Virtually every outcrop of this unit is slumped from above, so sorting out the stratigraphy is a challenge.

3 Mae working 060915Here is Mae again working through a small patch of the Speeton Clay. There are four broad intervals of the unit (A, B, C, D) that we must recognize by the fossil content and the position of the outcrop relative to various field markers like abandoned pillboxes, breakwaters, and large rocks.5-SS-Laura-boilers

One of our intertidal landmarks is a set of boilers from the 1897 wreck of the SS Laura, an Austro-Hungarian cargo ship that ran aground near Filey Brigg. The heavy boilers have stayed in essentially the same place for over a century.

4 Speeton work 060915The weather could not have been better today. We got Mae’s project off to a fine start with several sets of samples collected from the four primary units of the Speeton Clay.

Paul Taylor returned to his home in Epsom at the end of the day, leaving the three Americans to their own devices. He was essential in our first week, getting us oriented to the local geology, expertly driving us around to the various sites, and entertaining us with his trademark puns. He trained us well to carry on into week two of the Yorkshire Expedition.

Speeton Cliffs and Filey Brigg on a fine English summer day

June 7th, 2015

1 Speeton 060715SCARBOROUGH, ENGLAND (June 7, 2015) — This steep and muddy slope may not look like much, but it is the man exposure of the famous Speeton Clay, a Lower Cretaceous unit rich with fossils. Team Yorkshire started here (N 54.16654°, W 00.24567°) this morning to continue our reconnaissance of the local geology. The weather could not have been better. (I can only imagine what this sediment is like when wet!)

2 Slumped Speeton Pillbox 060715The Speeton Clay is quite mobile, with slips and land slippages very common along its coastal exposure. This is a World War II pillbox, part of the sea defenses of Britain, making its way down slope on the clay. On the shore itself are bits of previous WWII concrete installations that are now on the beach.

3 Red ChalkAfter collecting dozens of belemnites from the Speeton Clay for future research, we visited an exposure of the Red Chalk (Hunstanton Formation), which has smaller belemnites of a different genus.

4 Chalk cliffs s SpeetonIf we continued to the south we would have met these imposing cliffs of chalk, the northern part of the series of white coastal chalks that extends south past Dover. Seabirds swirled around them in the thousands this morning.

5 Paul marine tutorialWhile walking back to our car, Paul Taylor showed Meredith Mann and Mae Kemsley various intertidal organisms exposed on the broad beach beneath the Speeton Cliffs.

6 Barnacle covered boulder SpeetonAt a certain mid-tide level, the boulders on the beach were entirely covered with tiny barnacles. The rock itself is completely hidden.

7 Barnacles limpets SpeetonHere is a closer view of the rock surface. The oldest barnacles are greenish, the younger are gray. You can easily see several small limpets, but do you see the three large individuals in the center? They are camouflaged by their covering of barnacles.

8 Speeton cliffs beachFor a Sunday afternoon on such a nice day, we were pleased to see very few people on large stretches of the beach along the Speeton Cliffs. We had much more company later in the day.

9 Hambleton oolite south 060715In the afternoon we visited Filey Brigg for a look at parts of the Coralline Oolite Formation (Upper Jurassic, Oxfordian; N 54.21674°, W 00.26922°). We found the Hambleton Oolite Member very accessible and with a good number of fossils that could be collected. We are here looking at the “Upper Leaf” of the unit.

10 Thalassinoides sediment 060715Down on the Brigg itself we saw these massive overturned boulders of the Birdsall Calcareous Grit Member with spectacular examples of the trace fossil “boxwork” Thalassinoides. These fossil burrow systems were made by shrimp, probably of the callianassid variety.

11 Thalassinoides full relief 060715Sometimes the sediment between the infilled Thalassinoides tunnels was washed away, leaving this beautiful network in full relief.

12 Hambleton Oolite north 060715On the north side of Filey Brigg we could continue to follow the Upper Leaf of the Hambleton Oolite Member. The exposure is very good and well above the high tide. The access to this place, though, requires a low tide like we had this afternoon.

13 Hambleton Oolite Lower Leaf 060715At this site on the north side of Filey Brigg (N 54.21823°, W 00.26908°) we can get to the Lower Leaf of the Hambleton Oolite Member, with the Birdsall Calcareous Grit Member just above. Again, the Hambleton has many fossils that can be collected. If you look at the undersurface of the yellowish rock above our field party, you may be able to make out the Thalassinoides trace fossils. We can thus place the loose blocks with this distinctive trace fossil in their original stratigraphic position.

Another delightful field day. One more expedition tomorrow, and then we decide on the specific student projects.

 

Wooster’s Fossil of the Week: A Cretaceous oyster with borings and bryozoans from Mississippi

December 26th, 2014

Exogyra costata Prairie Bluff Fm Maastrichtian 585
As winter closes in on Ohio, I start dreaming about past field trips in warm places. This week’s fossil takes me back to fieldwork in Alabama and Mississippi during May of 2010. Paul Taylor (The Natural History Museum, London) and I studied the Upper Cretaceous and Lower Paleogene sections there with our students Caroline Sogot and Megan Innis (Wooster ’11). We had a most excellent and productive time.

The above fossil was very common in our Maastrichtian (Upper Cretaceous) outcrops. It is a left valve of Exogyra costata Say, 1820, from the Prairie Bluff Chalk Formation exposed in Starkville, Mississippi (locality C/W-395). It is a large oyster with a very thick calcitic shell. It has a distinctive spiral, making it look a bit like a snail. Oysters are sessile benthic filter-feeders that usually sit on their large left valves with a flatter and smaller right valve on top. Exogyra stayed stable on the seafloor because of its massive weight.
Interior left 111914This is a view of the inside of the left valve at the top of this entry. You can see the large, dark adductor muscle scar in the center. (The adductors closed the valves.) Note the many evenly-spaced holes in the oyster shell interior, with a closer view below.
Entobia 111914These holes were excavated by a clionaid sponge, producing the trace fossil Entobia. The sponge used the oyster shell as a protective substrate. It infested the valve after the death of the oyster made that particular piece of hard real estate available.
Interior close view 111914In the very center are some tiny encrusting cyclostome cheilostome bryozoans. Caroline, Paul and Liz Harper studied encrusting bryozoans like these from this field area as part of biogeographical and paleoecological investigation of the Cretaceous extinctions (see Sogot et al., 2013). I imagine Paul can even identify this species shown here. I wouldn’t dare! [Update from Paul: “I think these examples are cheilostomes, quite possibly Tricephalopora …” See comments.]
Thomas_Say_1818The genus Exogyra, along with the species E. costata, was named by Thomas Say (1787-1834) in 1820 (pictured above in 1818). Say was a brilliant American natural historian. Among his many accomplishments in his short career, in 1812 he helped found the Academy of Natural Sciences of Philadelphia, the oldest natural science research institution and museum in the New World. He is best known for his descriptive entomology in the new United States, becoming one of the country’s best known taxonomists. he was the zoologists on two famous expeditions led by Major Stephen Harriman Long. The first, in 1819-1820, was to the Great Plains and Rocky Mountains; the other (in 1823) was to the headwaters of the Mississippi. Along with his passion for insects, Say also studied mollusk shells, both recent and fossil. He was a bit of an ascetic, moving to the utopian socialist New Harmony Settlement in Indiana for the last eight years of his life. It is said his simple habits and refusal to earn money caused problems for his family. Say succumbed to what appeared to by typhoid fever when he was just 47.

References:

Harris, G.D. 1896. A reprint of the paleontological writings of Thomas Say. Bulletins of American Paleontology, v. 1, number 5, 84 pp.

Say, T.G., 1820. Observations on some species of Zoophytes, shells, etc., principally fossils. American Journal of Science, 1st series, vol. 2, p. 34-45.

Sogot, C.E., Harper, E.M. and Taylor, P.D. 2013. Biogeographical and ecological patterns in bryozoans across the Cretaceous-Paleogene boundary: Implications for the phytoplankton collapse hypothesis. Geology 41, 631-634.

Wooster’s Fossils of the Week: Bivalve borings, bioclaustrations and symbiosis in corals from the Upper Cretaceous (Cenomanian) of southern Israel

October 17th, 2014

Fig. 2 Aspidiscus1bw_scale 585The stark black-and-white of these images are a clue that the fossil this week has been described in a paper. Above is the scleractinian coral Aspidiscus cristatus (Lamarck, 1801) from the En Yorqe’am Formation (Cenomanian, Upper Cretaceous) of southern Israel. The holes are developed by and around tiny bivalves and given the trace fossil name Gastrochaenolites ampullatus Kelly and Bromley, 1984. This specimen was collected during my April trip to Israel, a day recorded in this blog. I crowd-sourced the identification of these corals, and they were highlighted as earlier Fossils of the Week. Now I’d like to describe them again with new information, and celebrate the publication of a paper about them.

En Yorqe'am040914aThis is the exposure of the En Yorqe’am Formation where Yoav Avni and I collected the coral specimens approximately 20 meters from its base in Nahal Neqarot, southern Israel (30.65788°, E 35.08764°). It is an amazingly fossiliferous unit here with brachiopods, stromatoporoid sponges, zillions of oysters, gastropods, ammonites and the corals.

The abstract of the Wilson et al. (2014) paper tells the story: “Specimens of the small compound coral Aspidiscus cristatus (Lamarck, 1801) containing evidence of symbiosis with bivalves have been found in the En Yorqe’am Formation (Upper Cretaceous, early Cenomanian) of southern Israel. The corals have paired holes on their upper surfaces leading to a common chamber below, forming the trace fossil Gastrochaenolites ampullatus Kelly and Bromley, 1984. Apparently gastrochaenid bivalve larvae settled on living coral surfaces and began to bore into the underlying aragonitic skeletons. The corals added new skeleton around the paired siphonal tubes of the invading bivalves, eventually producing crypts that were borings at their bases and bioclaustrations at their openings. When a boring bivalve died its crypt was closed by the growing coral, entombing the bivalve shell in place. This is early evidence of a symbiotic relationship between scleractinian corals and boring bivalves (parasitism in this case), and the earliest record of bivalve infestation of a member of the Suborder Microsolenina. It is also the earliest occurrence of G. ampullatus.”

Fig. 3 BoringPair2bw_scale 585 Paired apertures of Gastrochaenolites ampullatus in the coral Aspidiscus cristatus.

Fig. 4 EmbeddedBivalve1bw_scale_rev 585Polished cross-section through a specimen of Gastrochaenolites ampullatus in an Aspidiscus cristatus coral. In the lower left of the chamber are layered carbonates (A) representing boring linings produced by the bivalve. An articulated bivalve shell (B) is preserved in the chamber. The chamber has been roofed over by coral growth (C).

Thank you very much to Tim Palmer and Olev Vinn for their critical roles in this paper, and, of course, thanks to Yoav Avni, the best field geologist I know.

References:

Avnimelech, M. 1947. A new species of Aspidiscus from the Middle Cretaceous of Sinai and remarks on this genus in general. Eclogae geologicae Helvetiae 40: 294-298.

Gill, G.A. and Lafuste, J.G. 1987. Structure, repartition et signification paleogeographique d’Aspidiscus, hexacoralliaire cenomanien de la Tethys. Bulletin de la Societe Geologique de France 3: 921-934.

Kleemann, K., 1994. Associations of corals and boring bivalves since the Late Cretaceous. Facies 31, 131-140.

Morton, B. 1990. Corals and their bivalve borers: the evolution of a symbiosis. In: Morton, B. (Ed.), The Bivalvia: Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge (1899-1986) at the 9th International Malacological Congress, 1986, Edinburgh, Scotland, UK. Hong Kong University Press, Hong Kong, pp. 11-46

Pandey, D.K., Fürsich, F.T., Gameil, M. and Ayoub-Hannaa, W.S. 2011. Aspidiscus cristatus (Lamarck) from the Cenomanian sediments of Wadi Quseib, east Sinai, Egypt. Journal of the Paleontological Society of India 56: 29-37.

Wilson, M.A., Vinn, O. and Palmer, T.J. 2014. Bivalve borings, bioclaustrations and symbiosis in corals from the Upper Cretaceous (Cenomanian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 414: 243-245.

 

Next »