Wooster’s Fossil of the Week: An unusual scleractinian coral from the Upper Cretaceous of Israel

April 13th, 2014

Aspidiscus 041114aOriginally this was going to be a mystery fossil for a crowd-sourced identification while I’m here in Israel doing fieldwork, but through the wonders of the internet I finally found a match for the strange fossil above: it is the scleractinian coral Aspidiscus König, 1825 (Family Latomeandridae) Yoav Avni and I found several specimens in the lower third of the En Yorqe’am Formation (Upper Cretaceous, Cenomanian) in the Negev of southern Israel. I had never seen anything like it before.

The view above is of the upper surface of this discoidal fossil. There are several short and seemingly random ridges, which I learned later are called monticules in this genus. Each monticule has a series of septa, or thin vertical partitions. This was a compound coral, meaning it had multiple polyps on its surface, presumably each sitting on a monticule.
Aspidiscus 041114bThis is a reverse view of the En Yorqe’am variety of Aspidiscus. The pits appear to be molds of a gastropod on which the young coral must have recruited. It then grew centripetally, making a fine series of growth lines across a soft sediment.
Aspidiscus cristatus diagramThis diagram from Pandey et al. (2011) is a diagram of Aspidiscus cristatus found in the Cenomanian of Sinai, not too far from here. (This species is also found in Algeria, Tunisia, Spain, Greece, and Afghanistan — all in the Cenomanian.) Note that the center of A. cristatus has two large crossing monticules and the Israeli specimen does not. This is why I’m keeping it in open nomenclature — it doesn’t appear to be the same species. A. cristatus is found in the middle to early late Cenomanian; the En Yorqe’am specimen seems so far to be only in the early Cenomanian. This may mean the Israeli version is an older species. Both clearly liked living in marly shallow marine sediments.
Aspidiscus symbiontsHere’s the bonus: look at the round holes in the upper surfaces of these two specimens. These are caused by symbionts of some kind that lived within the growing coral. You can see best in the specimen on the right how the coral grew around the symbionts, producing a kind of tube. Nice.

Sorry for the lower quality of images this week. I’m photographing the fossils as best I can with a bedside lamp, a tiny tripod, and a shirt for background.

References:

Avnimelech, M. 1947. A new species of Aspidiscus from the Middle Cretaceous of Sinai and remarks on this genus in general. Eclogae geologicae Helvetiae 40: 294-298.

Gill, G.A. and Lafuste, J.G. 1987. Structure, repartition et signification paleogeographique d’Aspidiscus, hexacoralliaire cenomanien de la Tethys. Bulletin de la Societe Geologique de France 3: 921-934.

Pandey, D.K., Fürsich, F.T., Gameil, M. and Ayoub-Hannaa, W.S. 2011. Aspidiscus cristatus (Lamarck) from the Cenomanian sediments of Wadi Quseib, east Sinai, Egypt. Journal of the Paleontological Society of India 56: 29-37.

Seeing the archaeological site of Shivta through a geologist’s eyes

April 12th, 2014

01 Yoav Shivta 041214MITZPE RAMON, ISRAEL–The tradition we’ve built over the years on our Israel expeditions is to travel to interesting places on Saturdays to take a break from work. Yes, it appears geologists never really stop geologizing, but then that’s not really “work”, is it? Today Yoav, part of his family and I went to the Nabatean-Byzantine city of Shivta to explore the ruins and ponder the role of geology in the development of the settlement. You can find Shivta on the map at N 30.88185°, E 34.62878°. This site was studied by several archaeologists over the years, but I’m most impressed by the visit of T.E. Lawrence here in 1914. (Yes, that Lawrence.)

The questions: Why did this city develop here off the main routes? Did climate change force the abandonment of this city along with many other Negev settlements? Obviously we’re just poking around with these, but Yoav has some really good observations.

02 Shivta drainage 041214Obtaining enough water in this very dry place would have been the first problem to solve. The area has a limestone bedrock that the inhabitants could cut and carve to make many channels to direct storm rainwater into cisterns for storage and use during the dry seasons. Here we see a channel cut directly into the bedrock floor of the city plaza. At the top of the image are rock slabs covering the channel. They would have extended for the whole length to reduce evaporation.

03 Shivta cistern 041214That drainage channel, and many others, leads to this large cistern in the center of the town. It is mostly filled with sediment now. During its use it was many meters deep and had plastered walls to reduce leakage. Archaeologists have calculated that enough water could be stored in this cistern and many others through the city to support the population. This is with present rainfall amounts (about 10 cm a year). These cisterns could be easily built because about a meter below the hard limestone is a soft sandstone that can be excavated quickly.

04 Shivta quarry 041214The building stones for Shivta were obtained in the city itself and a few dozen meters away. Here is one of the ancient quarries. The limestone can be split vertically and horizontal slabs removed for use. You thus only have to cut the stone in two dimensions rather than three.

05 Southern church Shivta 041214This is the beautiful Southern Church. It has a classic Byzantine design. The interiors were made with soft Eocene limestones that could be easily smoothed and carved, while the rougher limestones were used for support out of sight. Some fragments of facing marbles, imported from Italy, can be seen in the alcoves.

06 Stones southern church 041214The stone above is fine-grained Eocene limestone suitable for carving. The stone in the background is coarser limestone. This is a portion of the Southern Church.

07 Shivta rock ceiling 041214Wood is a rare material, so the roofs were made of stone slabs laid across stone arches. Yes, you can imagine the earthquake danger!

08 Northern Church 041214The larger Northern Church is in the background here. Note the thick, sloping walls, especially on the left side.

09 Northern church buttress 041214In this closer view of the walls (and the Avni family dog, Anicha — great outdoor dog!), we see that the bulk of them are made of the rough limestones, and they were constructed to buttress the failing original walls, a smooth portion of which can be seen in the top right. These buttresses were made after earthquakes destabilized the finished walls.

10 Shivta earthquake damage 041214Yoav is pointing here to further earthquake damage to the buttresses themselves. The Shivta people lived through several earthquakes and continued to reinforce their structures.

11 Shivta garden 1 041214To the north of the city is this spectacular garden. It is an experimental plot to see if economic plants like olives, carob and pomegranates can be grown with just the local water trapped in basins in the Byzantine manner. The experiment ended years ago and the plants are doing great.

12 Shivta garden 2 041214This is a carob tree (Ceratonia siliqua), which is an important source of food and medicine throughout the Mediterranean region. Clearly it does well under these circumstances.

13 Shivta garden 3 041214These are olive trees, with a field of wildflowers beneath. With present rainfall amounts enough water can be trapped for agricultural and domestic use in Shivta. The hypothesis that some sort of desertification event (a common idea) ended these desert settlements is difficult to support when the dry conditions of today can still support the original community. It was likely economics and politics that spelled the end of Shivta, not climate change. We also see how critical the local geology was to the early inhabitants of this isolated city. They chose the location well for the agricultural and economic conditions of the time.

 

Cretaceous fieldwork around Mitzpe Ramon

April 11th, 2014

Makhtesh Ramon 041114MITZPE RAMON, ISRAEL–Today Yoav and I worked on the outskirts of his hometown. This was a field trip that began in his garden and then we wandered into the hills behind his house, eventually circling this little city to return to his house. About half the journey was along the cliff of Makhtesh Ramon, so the top image is a view from north to south. It is geologically inspiring to see this site every day.

MR larger view 041114After looking at the Avnon Formation for a bit (with its newly-found corals) and the Zafit Formation (with silicified tree trunks), we settled into our special mission to sort out stratigraphic issues of the En Yorqe’am Formation (Upper Cretaceous, Cenomanian). It was a lesson for me in how much a formation can differ in a few kilometers. I would not have recognized it from our explorations earlier this week. The above is a view of a new housing development and an excavation exposing the top part of the En Yorqe’am.

MR En Yorqe'am 041114This is a closer view of a mysterious silty dolomitic layer in the En Yorqe’am at the housing development. We’ve seen nothing quite like it in the other exposures of the unit. There is also below this what looks like a recrystallized biosparite showing the bedding associated with submarine dunes.

Calcite nodule 041114A key feature of that strange layer is the presence of these calcite-filled cavities. They appear to be formed from original anhydrite nodules, which were produced under hypersaline conditions. This is something we saw in the unit at Hamakhtesh Hagadol.

Grey layer MR 041114The solution to the stratigraphic dilemma of the En Yorqe’am is the position of what we call the “grey layer”. This means we have to examine it wherever it is, including on the edge of the makhtesh. “Like a sidewalk, but in the sky.” I wasn’t happy about our hike to that little point of rock, but it really was perfectly safe. And it was worth the effort because we found characteristic features to add to our analysis. It certainly was a fantastic view from there!

A mission in the Cretaceous of southern Israel

April 9th, 2014

Wadi Mishar viewMITZPE RAMON, ISRAEL–Today Yoav and I set out to solve a mapping dilemma concerning the boundaries of the Upper Cretaceous (Cenomanian) En Yorqe’am Formation in the Negev and, eventually, the Judean Desert to the north. It involved a bumpy ride deep into some of the most beautiful areas of the country, and it produced all sorts of delicious paleontological and sedimentological mysteries. I’ll talk more about this trip in later entires. Since it was 12 hours and I get up at 4:00 a.m. tomorrow, this is a truncated entry!

The setting is the stratigraphy of the En Yorqe’am and its bounding units: the Hevyon Formation below and the Zafit Formation above. Our job was to examine the contacts between these units and help come up with consistent definitions that can be used throughout the region. Right now there is considerable fuzziness as to where each formation begins and ends. Above is a labeled image showing the magnificent outcrop in Wadi Mishar (taken from our studied section at N 30.54899°, E 34.98843°).

Oysters En Yorqeam 040914In the process of sharpening the definition of the En Yorqe’am, we found some magnificent fossils. There are many paleontological and sedimentological projects possible in this unit. Oysters dominate the En Yorqe’am in mot places we visited. Above is a close view of one outcrop (at N 30.65788°, E 35.08764°; Nahal Neqarot) showing that the sediment is almost entirely oyster. The shells are often beautifully bored, but strangely there are virtually no encrusters.

Stromatoporoid En Yorqeam 040914To our surprise, we found these large roundish objects that look very much like stromatoporoids (at N 30.65788°, E 35.08764°). The lack visible mamelons (or corallites, for that matter), but internally they appear to show the typical laminations and pillars of these calcareous sponges. I’ve never seen them in the Cretaceous before, which is at the end of their range. I could be wrong and these fossils are odd altered corals. Only cutting and polishing will tell.

Terebratulids En Yorqeam 040914Also unexpected was the prevalence of brachiopods in parts of the En Yorqe’am (at N 30.65788°, E 35.08764°). These are articulated terebratulid brachiopods. They look very Jurassic in their appearance, but here they are in the Upper Cretaceous.

I’m looking forward to working with Wooster students on these outcrops next year! More on the En Yorqe’am later this week.

Cretaceous echinoderms are today’s stars

April 8th, 2014

Zichor 040814MITZPE RAMON, ISRAEL–There’s a joke in the title, in case you didn’t notice! I was on my own for my second day of fieldwork in southern Israel. I revisited yesterday’s outcrops of the Upper Cretaceous (Coniacian) Zichor Formation, taking more time to plot out future section-measuring and fossil-collecting sites for students. I was also able to spend a lot of classic nose-on-the-ground time sorting out the fossils.

The outcrop above is about the top half of the Zichor Formation in this area (N 30.30587°, E 34.96543°). Note the cemented limestones near the top and the soft marls in the foreground. Both have plenty of fossils, but you can imagine which is easier to collect from.

Filograna? 040814One mystery of this unit is at the very top of the section in one of the last bedding planes. There are extensive amounts of a twisty worm-tube called Filograna (or at least something close to it). You can see it in the above image. I was told earlier it was a “mat”, but it appears to be instead broken fragments of tube accumulations scattered about. Strange critter, this worm.Echinoid tests 040814The marls of the Zichor have an impressive echinoderm content. Since they have calcitic tests, they are very well preserved. Above are five heart urchins showing their classic pentameral symmetry.

Echinoid test plates 040814Here are fragments of a cidaroid echinoid test. In the middle of each plate is a circle with a boss extending outwards. Spines were attached to these, one of which is included in the image. I hope on our later expedition we can find whole specimens. Students are always up for these discovery challenges.

Asteroid ray oral 040814This was a first find for me: an asteroid (sea star) ray fragment. I don’t think I’ve ever found a sea star fossil before. We are looking above at the oral side where tube feet would have extended.

Asteroid ray aboral 040814This is the other side of the fragment — the aboral side. Beyond being cool, I’m afraid there is not a lot of significance for this fossil unless I can identify it further. Sea stars are famous for living in all sorts of marine environments, from the intertidal to deep trenches.

Some future Wooster students are going to have a good time with this unit sorting out the paleontological, sedimentological and stratigraphic contexts and then comparing this tropical fauna to the better known assemblages in the temperate north.

A Wooster Geologist is finally warm enough

April 7th, 2014

Yoav Zichor 040714MITZPE RAMON, ISRAEL–When I left Wooster on Saturday morning it was 34°F and overcast. It was sunny and an astonishing 84°F when I arrived in Tel Aviv on Sunday afternoon. That additional 50 degrees felt very good indeed after a winter of polar vortices and late-March snowstorms. I’m now based in the Ramon Suites Hotel in Mitzpe Ramon near the lip of the spectacular Makhtesh Ramon (N 30.60638°, E 34.80128°).

I’m back in Israel as part of my research leave from the College. This is my chance to explore new outcrops and ideas with my Israeli colleagues to prepare for the next generation of Independent Study students — and, of course, to do plenty of science for its own sake. I miss my students, though, for their companionship, sharp eyes, challenging questions, and navigation abilities (i.e., telling me when I’ve taken a wrong turn). This is how the leave system works so that we always have fresh projects with interesting and testable hypotheses. This is my 11th field season in Israel.

Today I met my long-time friend Yoav Avni of the Geological Survey of Israel, along with Zeev Lewy, a paleontologist retired from the Survey, to look at a fossiliferous unit Zeev discovered over two decades ago south of Mitzpe Ramon. We looked at the thickest section of the Zichor Formation (Late Cretaceous, Coniacian) to sort out a remarkably diverse set of silicified (silica-replaced) fossils associated with a mat of worm tubes (possibly of the genus Filograna). The top image shows the upper portion of the Zichor, with Yoav for scale (location: N 30.30587°, E 34.96543°). The image below is a view of the bedding plane with most (but not all) of the silicified fossils colored dark brown.

Zichor silcified fossils 040714One of the cool things about this layer is that the fossils are silicified, which is rare in this part of the Cretaceous section. Another is that aragonitic mollusks are preserved in this way (especially gastropods and bivalves), along with their calcitic cousins (like oysters and pectenids). The Filograna-like worm tube layer itself is fascinating since no one knows much about the paleoecology of this group, and we suspect it may have some significant evidence about the paleoenvironment encoded in its spaghetti-like appearance.

Zichor Menuha contact 040714The top of the Zichor meets the bottom of the Menuha Formation chalks (Late Cretaceous, Santonian). In this view, the yellow and brown Zichor is in the foreground and middle ground, with the whitish Menuha in the background.

Zichor Menuha close 040714Yoav and I visited the boundary between the Zichor (darker unit on the left) and Menuha (lighter on the right) to assess their relationship (N 30.30212°, E 34.95909°). At outcrops 30 km to the north this boundary is marked by a deep unconformity (eroded interval) and a layer of encrusted and bored cobbles. Here the boundary is flat and nearly continuous. The layer of silicified shells is just a few centimeters below the unconformity. This may not be by chance — units immediately below unconformities often have silicified zones.

Some of you may remember these unit names from previous expeditions. Micah Risacher (’11) worked on the Zichor Formation and its fossils in the Makhtesh Ramon area, and Andrew Retzler (’11) did his Independent Study research on the Menuha. We can now build on their excellent work as we develop additional outcrops and new questions.

Ordnance 040714Finally, it wouldn’t be the Negev if there wasn’t some ordnance on the outcrop. Can you tell what kind of bomb is shown above? The clues are in its current condition!

Wooster’s Fossils of the Week: Trace fossils making ghostly shells (Upper Cretaceous of Mississippi)

January 26th, 2014

Entobia gastropod Prairie Bluff Chalk FormationThe unusual fossil above was collected by Megan Innis (’11) and myself in Mississippi during a May 2010 paleontological expedition with Caroline Sogot and Paul Taylor of The Natural History Museum, London. That splendid trip has contributed already to one high profile publication (Sogot et al., 2013) and no doubt more will come from the excellent collections we made. All the fossils in this post came from the Prairie Bluff Chalk Formation (Maastrichtian) exposed at the intersection between Highway 25 and Reed Road in Starkville, Mississippi (locality C/W-395).

The specimen is a marine gastropod (fancy name for a snail), which is hard to believe considering no shell is preserved. The shape of the original aragonitic shell has been taken by a series of interlocking blobs, each with a sediment-filled tube extending outwards. These are casts of chambers made by a boring clionaid sponge. The resulting trace fossil is known as Entobia, a form we have seen several times in this blog. The sequence of events: (1) The sponges excavated cavities connected by tunnels into the aragonite shell of the gastropod, maintaining connections to the seawater for filter-feeding; (2) the cavities and tubes filled with fine-grained calcareous sediment after the death of the sponges; (3) the aragonite gastropod shell dissolved away, probably at the same time the sediment filling the cavities was cemented; (4) the fossil was exhumed as a series of natural casts of the sponge cavities — the trace fossil Entobia.
Entobia bivalve 1 exterior Prairie Bluff Chalk FormationThere were many other such fossil ghosts at this locality, such as the apparent bivalve shell fragment above.
Entobia cast close Prairie Bluff Chalk FormationIn this closer view (taken with my new extension tubes on the camera) we see some of the interlocking sponge chamber casts. On the surfaces of some you can just make out a reticulate pattern that represents tiny scoop-like excavations by the sponges. In the upwards-extending tubes there are a few green grains of the marine mineral glauconite.

As a paleontologist it is always sobering to see a fossil preserved in such an odd way. Were it not for these circumstances of boring, filling and cementation, the shells would have completely disappeared from the fossil record. Every fossil we have, really, is a victory of improbable preservation.

References:

Bromley, R.G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example. Geological Journal, Special Issue 3: 49–90.

Schönberg, C.H. and Shields, G. 2008. Micro-computed tomography for studies on Entobia: transparent substrate versus modern technology, p. 147-164. In: Current Developments in Bioerosion. Springer; Berlin, Heidelberg.

Sogot, C.E., Harper, E.M. and Taylor, P.D. 2013. Biogeographical and ecological patterns in bryozoans across the Cretaceous-Paleogene boundary: Implications for the phytoplankton collapse hypothesis. Geology 41: 631-634.

Sohl, N.F. 1960. Archeogastropoda, Mesogastropoda, and stratigraphy of the Ripley, Owl Creek, and Prairie Bluff Formations, p. A1-A151. In: Late Cretaceous gastropods in Tennessee and Mississippi: U.S. Geological Survey Professional Paper 331-A.

Taylor, P.D. and Wilson, M.A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62: 1-103.

Wilson, M.A. 2007. Macroborings and the evolution of bioerosion, p. 356-367. In: Miller, W. III (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, 611 pages.

First Wooster geology presentation at the 2013 annual meeting of the Geological Society of America in Denver, Colorado

October 27th, 2013

Oscar102713DENVER, COLORADO–It’s that time of year for geologists when we collect at one of two major national meetings. Wooster geologists are always well represented at the Geological Society of America convention, this year held in downtown Denver. Meagen Pollock, Shelley Judge and I are here with nine enthusiastic Wooster students. Some events have already taken place (notably for me the paleontology short course and an epic annual banquet meeting of the Paleontological Society), and we’ve had our first student poster presentation.

Oscar Mmari is shown above with his poster entitled: “Syndepositional faulting, shallowing and intraformational conglomerates in the Mishash Formation (Upper Cretaceous, Campanian) at Wadi Hawarim, southern Israel“. Readers of this blog will remember Oscar’s summer work in the Negev measuring and describing sections. Oscar’s presentation went very well. Every time I stopped by the poster someone was in deep conversation with him.

CCC102813Here’s an early morning view of the Colorado Convention Center in Denver where we’re doing our work and study (and socializing, truth be told). The weather this weekend has been fantastic, but a big change will come tomorrow morning.

More posts will follow!

Wooster’s Fossils of the Week: Dinosaur teeth from the Cretaceous of Morocco

July 21st, 2013

Spinosaurus_aegyptiacus_Cenomanian_Alnif_Morocco_Tooth_052013The fossil above is the best of a collection of dinosaur teeth given to us by the generous George Chambers (’79). The species that held it is the gargantuan theropod predator Spinosaurus aegyptiacus Stromer, 1915. The teeth are from Cenomanian (Upper Cretaceous) rocks exposed near Alnif, Morocco.
Spinosaurus_Group052013Here are some more of our Spinosaurus aegyptiacus tooth collection. You can see that the teeth have been extensively repaired with plaster and epoxy. That’s fine for us because they’re the only dinosaur teeth we have!

(Reconstruction by Dimitry Bogdanov, Wikipedia)

(Reconstruction by Dimitry Bogdanov, Wikipedia)

Spinosaurus is surprisingly little known in the general public, at least until the Discovery Channel started making incredible videos about the extinct beast. It was the largest of all carnivorous dinosaurs yet discovered — even bigger than Tyrannosaurus, Allosaurus and Gigantosaurus. Some specimens were up to 18 meters long. Spinosaurus was characterized by long spines extending up from the vertebrae almost like a pelycosaur. Its head was like that of a crocodile — long and narrow. Its teeth, too, are like those of crocodiles and alligators, being blunt, rounded and strong rather than sleek and sharp. They probably crushed and shook their prey in a crocodilian way as shown in those amazing Discovery Channel videos.

The original specimen of Spinosaurus was discovered in Egypt in 1912. Those fossils were completely destroyed when Munich, Germany, was bombed in 1944 by the Royal Air Force. Since then a few other incomplete skeletons have been found, along with lots of teeth.
435px-Ernst_StromerSpinosaurus was found, described and named by Ernst Freiherr Stromer von Reichenbach (1870-1952), a German paleontologist and aristocrat. Stromer’s scientific odyssey is worthy of a movie and is the basis of an excellent book (The Lost Dinosaurs of Egypt). He began his paleontological work in Egypt in 1910 at a time tensions between the British and Germans were ramping up. He fought disease, weather extremes and bureaucratic delays to make his unexpected dinosaur discoveries. As just one example, his fossils actually arrived in Germany in 1922 — ten years after they were collected. (World War I only took up four of those years.) In his latter years he refused to join the Nazi Party and maintained relationships with Jewish friends. This may have led to the destruction of the Spinosaurus specimens because the Nazi director of the Munich museum refused to move the fossils to a safe location. In the end he outlived the Kaiser and the Führer, dying at the age of 82 in 1950. A tough paleontologist in a tough time.

References:

Amiot, R., Buffetaut, E., Lécuyer, C., Wang, X., Boudad, L., Ding, Z., … and Zhou, Z. 2010. Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. Geology 38: 139-142.

Buffetaut, E. and Ouaja, M. 2002. A new specimen of Spinosaurus (Dinosauria, Theropoda) from the Lower Cretaceous of Tunisia, with remarks on the evolutionary history of the Spinosauridae. Bulletin de la Société géologique de France 173: 415-421.

Nothdurft, W. and Smith, J. 2002. The Lost Dinosaurs of Egypt. Random House, 242 pages.

Smith, J.B., Lamanna, M.C., Mayr, H. and Lacovara, K.J. 2006. New information regarding the holotype of Spinosaurus aegyptiacus Stromer, 1915. Journal of Paleontology 80: 400-406.

Last day of fieldwork for Team Israel 2013

July 11th, 2013

1_DragFoldOscar071113MITZPE RAMON, ISRAEL–We like to think that Dr. Shelley Judge would be proud of our fieldwork today. The Wooster Geologists returned to Wadi Hawarim to finish our fieldwork for Oscar Mmari’s project on synsedimentary faulting in the Mishash Formation (Campanian, Upper Cretaceous). We returned to the fault visible above just to the left of the dark outcrop of the lower Mishash. The left side is upthrown, the right downthrown, making this a very steep normal fault. the Mishash seen here is in a magnificent drag fold against the fault. The Mishash is eroded away on the upthrown block, so we could only climb to the top of the hill here and estimate the minimum displacement on the fault. The blocks are separated by at least 50 meters. The fault trace is almost exactly east-west. You can barely see Oscar in the lower right standing on the spot where the Mishash rocks fold more than 90° to become horizontal to the right. Oscar and I worked today to follow the fate of a conglomerate that is thickest at the fault where Oscar is standing (location 031 on the image at the end of this post), and then thins and becomes finer as we move away from the fault into the syncline to the south. We believe this indicates that the conglomerate came from the upthrown block and thus the fault formed while the Mishash was being deposited. (Lizzie Reinthal and Steph Bosch, in the meantime, collected more shark’s teeth for us and then explored the wadi system.)

2_HawarimPhosphorites071113This is the Mishash Formation phosphorite zone several hundred meters south of the fault (location 049 in the bottom image). It is much thicker than the section near the fault (see the top photo in this entry).

3_ThinConglomerates071113The conglomerate that is a meter thick near the fault is reduced to these two lensoidal coarse sandstones that Oscar found in this southernmost outcrop. The grain size and thickness reduces dramatically as we move away from the fault.

4_WadiHawarimSection071113This beautiful Wadi Hawarim section of the phosphorites gave us our final clues as to the relationship between the fault and the conglomerate. We also have a sealevel story here with shrimp burrows, but we’ll save that for a later post after Oscar has done some lab work.

5_Hawarim071113Here is a Google Earth view of Oscar’s collecting sites and measured sections. The fault shown in the top photo is at 031, with the photo taken from 047. The fault runs east-west, and Oscar’s sites are all to the south.

 

Next »