Wooster’s Fossils of the Week: Upper Carboniferous seed casts from northeastern Ohio

October 31st, 2014

Trigonocarpus trilocularis Hildreth 1838We haven’t had a paleobotanical fossil of the week for awhile, so here are a couple of nice seed casts from the Upper Carboniferous Massillon Sandstone exposed near Youngstown, Ohio. They fall within the “form genus” Trigonocarpus Brongniart 1828. A form taxon is one that may not have any systematic or evolutionary validity, but it is a convenient resting place for taxa that share a particular morphological pattern but can’t be easily classified elsewhere. Trigonocarpus consists of seed casts that are “radially symmetrical, decorticated, and have their surface marked by three prominent ridges” (Gastaldo and Matten, 1978, p. 884). These particular seeds appear to be Trigonocarpus trilocularis (Hildreth, 1837). The taxa here are problematic, of course, because these seeds belong to larger plants that have their own names.
Trigonocarpus trilocularis Hildreth 1838_585These seeds appear to be from medullosalean trees, which were small relatives of today’s cycads. They were common in wetlands throughout North America and Europe during the Carboniferous, especially the Late Carboniferous. The seeds we have were likely attached to small stalks. You can see what appears to be a circular attachment scar above.
Samuel Prescott Hildreth (1783–1863)
Dr. Samuel Prescott Hildreth (1783-1863) was a physician and historian with a keen eye for natural history, especially including fossils and rocks. He was born in Massachusetts of strong Patriot stock and moved to the dangerous territory of Ohio in 1806, settling in Marietta in 1808. Dr. Hildreth is often cited as one of the first scientists in the country west of the Alleghany Mountains. His prolific writing is fast-moving, diverse and interesting, so he must have been a great traveling companion. Dr. Hildreth served in the Ohio Legislature and was on the first Ohio Geological Survey.
HildrethNutThe above is a figure from Hildreth (1837, p. 29) showing the fossil seed he named Carpolithus trilocularis. He wrote that “[t]his nut is probably the fruit of some antediluvian palm”, which is not far from what we think now (apart from the Flood reference!).

References:

Gastaldo, R.A. and Matten, L.C. 1978. Trigonocarpus leeanus, a new species from the Middle Pennsylvanian of southern Illinois. American Journal of Botany 65: 882-890.

Hildreth, S.P. 1837. Miscellaneous observations made during a tour in May, 1835, to the Falls of the Cuyahoga, near Lake Erie: extracted from the diary of a naturalist. American Journal of Science and Arts 31:1-84

Zodrow, E.L. 2004. Note on different kinds of attachments in trigonocarpalean (Medullosales) ovules from the Pennsylvanian Sydney Coalfield, Canada. Atlantic Geology 40: 197-206.

The geological setting of Fort Necessity, Pennsylvania

October 11th, 2014

Great Meadows 101114On July 3, 1754, colonial lieutenant Colonel George Washington fought and lost a small battle on this site in southwestern Pennsylvania. He and his 400 men had built this makeshift fort about a month before in anticipation of an attack by several hundred French soldiers and their Indian allies. The French were incensed at Washington and his troops after they killed or captured most of a French party at the Battle of Jumonville Glen two months before. (Accounts vary as to who was at fault for that deadly encounter as France and Britain were not at war.) The Battle of Fort Necessity was just one day long, and the British under Washington had the worst of it. Washington accepted French surrender terms and he and his men were allowed to march home. This pair of skirmishes between the French and British started the French and Indian War,  known outside of the USA as the Seven Years’ War. It quickly became a global fight between empires; in many ways it was the first modern world war. And it all started in this lonely part of the Pennsylvania country.

Washington chose to place his ill-fated fort, a reconstruction of which is shown above, in a high grassy spot known as the Great Meadows. It is situated near two passes in the Allegheny Mountains, and thus sits strategically beside major trails. Washington liked the area because there was plenty of feed for his pack animals and horses, lots of available water (too much, it turned out), and it was not in the midst of the endless woods of the region.
Screen Shot 2014-10-12 at 5.19.55 PMThis geological map of the area (from the National Park Service) shows that the fort was situated on the Upper Carboniferous Glenshaw Formation. This unit has much clay, trapping water in the thin soil above (“Philo Loam“). Further, the area is a floodplain, thus making the area a kind of wetland with grasses and sedges. Great for horse grazing, not so good for walls, buildings or trenches.
Entrenchments 101114Here we see the shallow entrenchments made by Washington and his men as they awaited attack. The clayey soil and pouring rain made a mess of these boggy trenches.

Fort inside 101114Inside the fort was a simple square building used mainly to keep supplies and wounded men dry, During the battle it was partially flooded with rainwater.

British view 101114This is the British view from the fort of the surrounding woods. Washington miscalculated his placing of the fort because the French and Indians could easily hit it with musket shots while hiding among the trees.

French Indian view 101114The French and Indian view of the hapless fort. It was easy to rain bullets on the British from the woods with little fear of the return fire.

Braddock road trace 101114Nearby is a trace of the military road Washington’s unit had blazed through the Pennsylvania woods on their way to the French Fort Duquesne in what is now Pittsburgh. The British General Edward Braddock enlarged this road the next year in his famous march to a spectacular defeat nearby (the “Battle of Monongahela“).

We can’t fault Washington too much for his choice of a fort location. He did not have the resources to clear a large patch of forest, so the meadow would have to do. He expected to be reinforced soon, so he saw the fort as a temporary measure of protection. The rain was beyond his control that July day, and the clay-rich meadow floor ensured wet misery and ruined supplies. The French surprisingly gave good terms for surrender because they were wet, too, in those woods, and they also expected more British and colonial troops would arrive soon. They feared being surrounded, and so thought their message to Washington and his countrymen had been sufficiently made. How different our world would be if the French were not so generous here in southwestern Pennsylvania!

Additional Reference:

Thornberry-Ehrlich, T. 2009. Fort Necessity National Battlefield Geologic Resources Inventory Report. Natural Resource Report NPS/NRPC/GRD/NRR—2009/082. National Park Service, Denver, Colorado.

Wooster’s Fossil of the Week: A crinoid-rich Lower Carboniferous siderite concretion (part III — those crinoids had company)

January 19th, 2014

Crinoid with platyceratid (cross-section) 585The last installment of our analysis of a Lower Carboniferous fossiliferous siderite concretion given to the department by Sam Root. In part I we looked at the crinoid stems and calices on the outside and discuss the formation of siderite concretions and the preservation of this particular assemblage. In part II we had our first look at polished sections of the concretion, taking special note of the crinoid stem morphology and its replacement by the mineral marcasite. For part III you were promised a molluscan surprise.

In the top view you can see that we have a section that fortuitously cut right through the center of a crinoid head. The stem is visible at the bottom, with the calyx and attached arms above. Crowning the calyx is a thin semi-circle of shell nestled open-side-down across the crinoid oral surface. This we can tell from the shell morphology is a parasitic platyceratid gastropod caught in place on its crinoid host. Nice.
Platyceratid Lower Carboniferous 585 annotatedThree years ago we received a fossil donation from the Calhoun family of local Lower Carboniferous fossils, including this beauty pictured above. It is a crinoid calyx (you can tell by the polygonal plates) with a cap-shaped platyceratid gastropod (Palaeocapulus acutirostre) preserved in place on top of it between the arms (now missing). I drew a line across the image to indicate the likely plane of section through a similar pair in our siderite concretion. In section the platyceratid would be recorded as a thin shelly top on the calyx.

Platyceratids have long been known as Paleozoic associates of crinoids. For many years we thought of them as simply coprophagous, meaning they were consuming crinoid feces as they exited the anus. (Awkward conversation, I know.) Careful work by Tom Baumiller (1990) showed that this arrangement (which would not have directly harmed the crinoid because it was, after all, done with the food) was likely not the case. He found trace fossil evidence that the platyceratids were likely accessing crinoid stomach contents directly through some sort of proboscis, and that these parasitized crinoids were stunted in their growth and thus directly harmed (but not killed — no good parasite wants to lose its meal ticket). Our new specimen was thus likely a miserable little crinoid, even if it didn’t have a brain to sort out its feelings.
Stem Calyx 121413As one last view of our crinoids in the concretion, look at the detail in the crinoid stem just below the calyx. The lumen is visible in the center of the stem, as well as the alternating ornaments on the columnals.

This has been a fun specimen to examine. Thanks, Sam!

References:

Baumiller, T.K. 1990. Non-predatory drilling of Mississippian crinoids by platyceratid gastropods. Palaeontology 33: 743-748.

Donovan, S.K., and Webster, G.D. 2013. Platyceratid gastropod infestations of Neoplatycrinus Wanner (Crinoidea) from the Permian of West Timor: speculations on thecal modifications. Proceedings of the Geologists’ Association 124: 988–993.

Wooster’s Fossil of the Week: A crinoid-rich Lower Carboniferous siderite concretion (part II — the inside story)

January 12th, 2014

 

1 Cross-section macro 2 121413Last week’s specimen was a Lower Carboniferous fossiliferous siderite concretion from an unknown location, but likely from the Wooster area. It was donated to the department by Emeritus Geology Professor Sam Root. The concretion has beautiful crinoids preserved in it, including several stems of at least two types and three calices (crowns or heads).

I took a chance and cut the concretion with a rock saw if there were interesting features on the inside. There were indeed! In the image above you see at the bottom a cross section through a broken crinoid stem showing the articulated columnals. Above it are sections of crinoid arms (the white and grey spots) each trailing a pair of delicate pinnules (the feeding parts of the arms that carried tube feet). The arms are coming from an intact calyx that is not in the plane of the section.
2 Micro 1 121413In this closer view of the above stem we see the complex anatomy of the crinoid stem. We also see the amazing mineralogy of these specimens in a way we could not from the outside. The light brown matrix is, as we’ve said, the concretion made primarily of siderite (an iron carbonate) and clay. The crinoid columnals, which were originally made of calcite (calcium carbonate), have a silvery metallic material replacing them. This is the iron sulfide mineral marcasite. The white mineral on the inside of the stem on the left is quartz (silicon dioxide). It filled in open spaces inside the stem. To confuse things (nothing is ever easy in this business!) on the right end of the stem marcasite has filled in the cavities instead of quartz.
3 Macro close 121413This view of another stem in cross-section shows a fourth mineral in the system: calcium carbonate. It can be seen as the glassy material in the middle of the structure. It is not the original calcite that made up the columnals. It is instead a later mineral that, like the quartz and marcasite in the previous image, filled in open spaces within the stem. The marcasite, quartz and calcite are thus secondary minerals introduced to the fossil long after its burial. We call these chemical and physical changes to the original mineralogy diagenesis.
4 Fearnhead 2008 Fig 2Since this cross-section view of the crinoid stems is surprisingly complicated, here is a diagram from Fearnhead (2008, figure 2). The top is a crinoid columnal looking at its articulating surface. At the bottom is a cross-section. In our crinoids you can easily make out the lumen as a hollow space running through the center of the stems (filled with marcasite, calcite or quartz). The zygum is that portion of the columnal replaced by marcasite.

Lat week I mentioned that there was a molluscan surprise revealed upon cutting open this concretion. I’ll save that for part III of this series. Same channel next week!

References:

Fearnhead, F.E. 2008. Towards a systematic standard approach to describing fossil crinoids, illustrated by the redescription of a Scottish Silurian Pisocrinus de Koninck. Scripta Geologica 136: 39-61.

Wooster’s Fossil of the Week: A crinoid-rich Lower Carboniferous siderite concretion (part I)

January 5th, 2014

Cobble Top 121413Last year Wooster emeritus geology professor Sam Root generously donated the above pictured siderite concretion to our paleontology collections. He had received it from a friend who didn’t know where it came from originally so we have no location. The fossils in it, though, show it is Lower Carboniferous in age and could well be from local outcrops of the Cuyahoga Formation. Sam knew this is a cool specimen so he wanted to see what we could make of it.

In the top view we can see crinoid stems running transversely across the surface. Remarkably, two crinoid calices (the arm-bearing crown of the crinoid at the top of the stem) are visible. The larger one is in the lower left. You can see the top of the stem to the farthest left, and then the calyx and attached arms to the right. The second calyx is in the upper right with the arms extending down and towards us. Finding one crinoid calyx with the delicate arms still attached is impressive; finding two in the same slab is a real treat.
Siderite Concretion Carboniferous 585Above is the other side of the concretion. Again a crinoid stem can be seen transverse across the surface. This stem is different from those on the other side, though. It does not have external sculpture, and it is separated into distinct pluricolumnals as if someone sawed through it at regular intervals.
Cobble closer 121413A closer view of the above shows yet another crinoid calyx, this one almost entirely buried in the rock with the arms extending to the surface. The arms have smaller sub-arms (pinnules) still attached. Amazing.

The concretion is made of the mineral siderite (an iron carbonate) that precipitated in fine-grained sediments around the fossils after they were buried. This usually takes place under subsurface anoxic and slightly acidic conditions. The crinoids with all their small and easily-disarticulated parts were buried quickly on the ancient seafloor, probably by a storm-induced pulse of silts and clays. The decay of their soft parts produced hydrogen sulfide gas ad carbon dioxide, triggering the geochemistry that caused the precipitation of siderite around them. The hard concretion that resulted was likely in a matrix of soft shale. The strength of the siderite kept the fossils from being crushed by the weight of sediment above. At some point many millions of years later, the shale eroded away and the concretion was freed to be picked up by some lucky person.

The crinoid stem that is divided into regular increments is interesting on its own. These segments with multiple columnals (the poker chip-like individual elements) are called pluricolumnals. They likely broke at pre-set weaknesses in the connective tissue of the living crinoid, something we see in their living descendants. This may have allowed them to break off their stems (autotomize) when in danger so that the calyx and remaining stem could float away for re-establishment elsewhere.

This concretion is so interesting that I (forgive me, Sam) could not resist cutting it open to see what is inside. The inner view is even more fascinating and will be revealed next week in part II of this story. As a teaser, it involves four minerals and a surprising mollusk!

References:

Baumiller, T.K. and Ausich, W.I. 1992. The broken-stick model as a null hypothesis for crinoid stalk taphonomy and as a guide to the distribution of connective tissue in fossils. Paleobiology 18: 288-298.

Gautier, D.L. 1982. Siderite concretions; indicators of early diagenesis in the Gammon Shale (Cretaceous). Journal of Sedimentary Research 52: 859-871.

Wooster’s Fossil of the Week: Echinoid fragments from the Upper Carboniferous of southern Nevada

December 8th, 2013

 

Bird Spring Echinoid Carboniferous KC33 585This rock has been in my Invertebrate Paleontology course teaching collection since I arrived in Wooster. I collected it way back when I was doing my fieldwork for my dissertation on the biostratigraphy and paleoecology of the Bird Spring Formation (Carboniferous-Permian). This specimen comes from Kyle Canyon in the Spring Mountains west of Las Vegas, Nevada. It is from the Upper Carboniferous part of the Bird Spring. It is up this week in honor of Jeff Thompson, a new graduate student at the University of Southern California beginning his thesis work on Paleozoic echinoids.

These are spines and test plates from the echinoid Archaeocidaris M’Coy, 1844. There are many far more attractive specimens known of Archaeocidaris, so consider this a more average view of what you’re likely to find in the fossil record. The test plates are polygonal and the spines have characteristic outward-directed thorns on them. This particular specimen was disarticulated after death in a shallow, possibly lagoonal environment.
M'CoyArchaeocidaris was named by Sir Frederick M’Coy, an Irish paleontologist. (You may have seen his name as McCoy or MacCoy, but he signed with the more natively Irish M’Coy.) M’Coy was born in 1817 or 1823 (I’m shocked that there is such a discrepancy in the records) in Dublin (maybe). His father was a physician and a professor at Queen’s College, Galway. M’Coy was apparently an early starter, giving his first paper in 1838 on bird functional morphology and classification. (He was either 15 or 21.) His work history is a bit spotty. In 1841 he became Curator of the Geological Society of Dublin, but was soon replaced. In 1845 he joined the new Geological Survey of Ireland hoping to be a laboratory paleontologist. He ended up doing fieldwork but was rather bad at it, resigning from that job. Off to Cambridge he went to assist Adam Sedgwick in describing fossils. He was at last doing something in which he excelled, resulting in important publications. In 1849 M’Coy was appointed Chair of Geology and Mineralogy at Queen’s College, Belfast. His last career move was a big one: he left Ireland for Australia in 1854 to become one of the first four professors of the new University of Melbourne and director of the National Museum of Victoria (now Museum Victoria). M’Coy was very successful in these roles, although I must note that he was an advocate of importing English rabbits into Australia (you know the result) and he appeared to be a bit of an anti-Darwinist. He died in Melbourne in 1899. (Thank you to my friend Patrick Wyse Jackson for these details on M’Coy.)
Echinocrinus urii pl XXVII 1 M'Coy 1844The above is a figure in M’Coy’s 1844 work of the echinoid Echinocrinus urii (M’Coy, 1844, pl. XXVII, figure 1). There is a long story as to how this E. urii became the type species of Archaeocidaris. Andrew Smith sums it as:

Cidaris urii Fleming, 1828, p. 478, by subsequent designation of Bather 1907, p. 453. Generic name Archaeocidaris validated in Opinion 370 under plenary powers, by suppression under same powers of generic name Echinocrinus Agassiz, 1841. Opinions of the International Commission of Zoological Nomenclature 1955, 11, 301-320.

In any case, you can see how closely this illustration of an Irish fossil resembles our fossiliferous slab from the Spring Mountains. Ireland is far from Nevada now, but in the Carboniferous they were considerably closer.

References:

M’Coy, F. 1844. A synopsis of the characters of the Carboniferous limestone fossils of Ireland. Dublin, Printed at the University Press by M.H. Gill.

Rushton, A. 1979. The real M’Coy. Lethaia 12: 226.

Wilson, M.A. 1985. Conodont biostratigraphy and paleoenvironments at the Mississippian-Pennsylvanian boundary (Carboniferous: Namurian) in the Spring Mountains of southern Nevada. Newsletters on Stratigraphy 14: 69-80.

Wyse Jackson, P.N. and Monaghan, N.T. 1994. Frederick M’Coy: an eminent Victorian palaeontologist and his synopses of Irish palaeontology of 1844 and 1846. Geology Today 10: 231-234.

Wooster’s Fossil of the Week: A crinoid calyx from the Lower Carboniferous of Iowa

November 24th, 2013

Macrocrinus verneuilianus (Shumard, 1855) 585In honor of Echinoderm Week for my Invertebrate Paleontology course, we have a beautiful crinoid calyx (or crown, or just “head”) on a slab from the Burlington Limestone (Lower Carboniferous, Osagean) found near Burlington, Iowa. I inherited this fossil when I arrived at Wooster, so I have no idea who collected it or when. The handwritten number is similar to those on many of our 19th century specimens. The sharp features of the specimen have been a bit dulled by a preparation technique that probably involved abrasives.

The crinoid is Macrocrinus verneuilianus (Shumard, 1855) of the Order Monobathrida. It is unusual in that it is preserved with its filter-feeding arms intact, along with a magnificent anal tube (see closer view below).
Macrocrinus anal chimney 585The anal tube, sometimes called an anal chimney, is just what you guessed it would be — an anus at the end of a long pipe of calcitic plates. Its primary purpose was all about hygiene. The tube allowed waste products to be whisked away far from the mouth of the crinoid, which was at the base of the arms. Some researchers suggest that the long tube served another function as well: it may have helped stabilize and direct the filter-feeding fan of outstretched arms in a stiff current, something like the tail of an airplane or a panel on a weather vane.

Macrocrinus verneuilianus (Shumard, 1855) diagramFigure of Macrocrinus verneuilianus (9) from “Paleontology of Missouri” (1884) by Charles Rollin Keyes. That long anal tube is not exaggerated!
Shumard585Benjamin Franklin Shumard (1820-1869) named Macrocrinus verneuilianus in 1855. As you might have deduced from his name, Shumard was a Pennsylvanian, having been born in Lancaster. He received his bachelor’s degree from Miami University in Oxford, Ohio, and then later earned an MD in Louisville, Kentucky, in 1843. As a young doctor in Kentucky, he began to collect fossils as a hobby. After just three years of medicine, he gave it up to pursue a career as a geologist. (Those Kentucky fossils must have been particularly fine!) By 1848 he was on geological surveys for Minnesota, Wisconsin and Iowa, and in 1850 he went on a geological survey expedition to Oregon. (Imagine that trip in 1850.) In 1853 he became the paleontologist in the Missouri Geological Survey. In 1858 he left Missouri to begin the first Geological Survey in Texas. The Civil War must have caused him considerable pain, since he was a Pennsylvanian in Texas. He moved to St. Louis and renewed his medical career in 1861. In 1869, he decided to move south to New Orleans for health reasons. The steamship he took burned to the waterline one evening north of Vicksburg. He was safely rescued, but contracted pneumonia in the process. He returned quickly to St. Louis and there died at 49 years of age. At the time of his death Shumard was president of the St. Louis Academy of Science and a member of the Geological Societies of London, France, and Vienna, and he was also a member of the academies of science in Philadelphia, Cincinnati, and New Orleans. No doubt we would have had much more scientific accomplishment from this young paleontologist had he lived longer.

References:

Ausich, W.I. 1999. Lower Mississippian Burlington Limestone along the Mississippi River Valley in Iowa, Illinois, and Missouri, USA, p. 139-144. In: H. Hess, W.I. Ausich, C.E. Brett and M.J. Simms (eds.), Fossil Crinoids, Cambridge University Press.

Ausich, W.I. and Kammer, T.W. 2010. Generic concepts in the Batocrinidae Wachsmuth and Springer, 1881 (Class Crinoidea). Journal of Paleontology 84: 32-50.

Lane, N.G. 1963. Two new Mississippian camerate (Batocrinidae) crinoid genera. Journal of Paleontology 37: 691-702.

Shumard, B.F. 1855. Description of new species of organic remains. Missouri Geological Survey 2:185–208.

The Lodgepole Limestone Formation

May 26th, 2013

585_LodgepoleLimestoneFormationLoganCanyonUtah052613

LOGAN, UTAH–Today we hiked up part of Logan Canyon along the south side of the Logan River. Towering above us on either side were massive limestone cliffs, as shown above. The thickest unit is the Lodgepole Limestone Formation (Lower Carboniferous, Tournaisian — about 350 million years old), which is well known throughout the northern Rocky Mountains. I’ve long admired its extent and consistency. It testifies to a shallow carbonate platform that extended from what is now Utah, and Colorado up into central Montana. In fact, correlative carbonates by other names are found from Arizona (the Redwall Limetone) well into Canada. I’ve also been impressed with those many paleontologists over the past century and a half who have managed to pry fossils out of its concrete-like matrix. When they do they have beautiful bryozoans, brachiopods and rugose corals. Some of the best are silicified and removed by dissolving the calcitic matrix from around them.

View of the northern side of Logan Canyon, Utah. The Lodgepole Limestone Formation makes up the major cliff on the right.

View of the northern side of Logan Canyon, Utah. The Lodgepole Limestone Formation makes up the major cliff on the right.

The Lodgepole Limestone Formation is part of the Madison Group of mostly limestones and dolomites. Most of these rocks are affected by karstic weathering, so the terrain often has disappearing streams, sinkholes and caverns.

While the carbonates of the Lower Carboniferous were being deposited in western North America, mixed siliciclastics dominated the east. Last semester’s Sedimentology & Stratigraphy class studied some of those rocks on their field trip to Lodi and the southern edge of Wooster, Ohio. It is always fascinating to look at very different sediments deposited at the same time in different places.

Sed/Strat goes local with its field trip: the Meadville Shale and the Logan Formation (Lower Carboniferous)

April 27th, 2013

MeadvilleB042713WOOSTER, OHIO–The traditional spring field trip in the Sedimentology & Stratigraphy course at Wooster is taken several hours south, usually in Jackson County or, as last year, in a soggy quarry outside of Dayton. This time, though, we stayed nearby, measuring and describing the local bedrock: the Meadville Shale Member and the Logan Formation, both in the Lower Carboniferous. We had a spectacular day with the best weather Ohio can offer.

Our first location, shown above, was in Lodi Community Park about 20 miles north of Wooster. A tributary of the Black River (the East Fork Black River) flows through a small valley, exposing the Meadville Shale in its steep sides. The Meadville is a member of the Cuyahoga Formation and is late Kinderhookian in age. The students above are beginning to measure the unit with their Jacob’s staffs.

MeadvilleA042713Candy Thornton and William Harrison are here at the exposed base of the Meadville. They’re taking a break from geology to examine a salamander they found on this fine spring morning.

Spiriferid042713 The Meadville is in part very fossiliferous. We found crinoids, bryozoans, bivalves and brachiopods like this nice spiriferid above.

FluteMarks042713 An interesting feature on the soles of some thin siltstones are these long, parallel grooves called flute marks. They were made when shells were dragged across a muddy substrate, leaving scour marks. We think they represent the basal unit of thin turbidites formed by sediment slurries that flowed across the seafloor.

SarahF042713Sarah Frederick climbed high on the outcrop with a measuring staff to describe the transition from a silty shale to a very fine sandstone.

PicnicTable042713Here a group of Wooster geologists compares notes as they construct their stratigraphic columns. Yes, this sunlight felt very good to us.

Logan042713Our afternoon stop was in southeastern Wooster along the onramp from north Route 83 to east Route 30. The Logan Formation exposed here is a Lower Carboniferous (early Osagean) very fine sandstone and conglomerate. This site is near what was once known as “Little Arizona” to older Wooster geologists. That exposure was mostly removed when this new onramp was constructed.

Conglomerate042713The base of the Logan has an extensive conglomerate sometimes referred to as the Berne Member. As you can see, it mostly consists of rounded quartz and chert pebbles, making it a very mature sediment.

Dewatering042713One of the distinctive features of this Logan outcrop are these large dewatering structures. These form when a water-rich slurry of sediment is forced upwards through the sediment above. Vertical channels are made between the rounded bases of sandstone bodies. One interpretation of these structures is that they were produced an earthquake shaking the water-saturated sediment. If this was the case, we would call these seismites.

LoganGroup042713Here a happy group of geologists is returning to the vans with various fossil and rock specimens. Now it’s time to write the reports!

 

 

Wooster’s Fossil of the Week: A camerate crinoid from the Lower Carboniferous of north-central Ohio

April 7th, 2013

Cusacrinus_daphne033013Visitors often bring rocks and fossils to the Geology Department for identification. We love to solve the puzzles (or at least make the attempt), and our new friends appreciate names and ages for their treasures. (Usually. We’ve disappointed more than a few finders of “meteorites”.) Last week a home-schooling group came in from nearby Ashland with a tray of stones they found in a stream bed eroding an exposure of the Lower Carboniferous (Kinderhookian) Meadville Shale Member of the Cuyahoga Formation. One of the objects was the spectacular fossil shown above.

This is a calyx and the attached arms (essentially the “head”) of a camerate crinoid known as Cusacrinus daphne (Hall, 1863). (Our friend Bill Ausich of Ohio State University provided the identification — these crinoids are his speciality.) It is preserved as an external mold, meaning that the actual skeleton was covered in sediment (or in this case a concretion) and then dissolved away, leaving a cavity showing a mold of its exterior details. It is a rare fossil to find in our part of the world.

CrinoidCalyx033013Above is a close-up of the calyx of Cusacrinus daphne (Hall, 1863). Note the radiating ridges on the exteriors of each thecal plate. They are characteristic of this species.

CrinoidArms033013These are some of the arms of the crinoid. They are complex because each arm is lined with tiny branches called pinnules, making feather-like extensions for filter-feeding.

Thank you to our new Ashland friends for sharing such a beauty with us!

References:

Ausich, W.I. and Roeser, E.W. 2012. Camerate and disparid crinoids from the Late Kinderhookian Meadville Shale, Cuyahoga Formation of Ohio. Journal of Paleontology 86: 488-507.

Kammer, T.W. and Roeser, E.W. 2012. Cladid crinoids from the Late Kinderhookian Meadville Shale, Cuyahoga Formation of Ohio. Journal of Paleontology 86: 470-487.

Next »