Archive for the 'Uncategorized' Category

Wooster’s Pseudofossils of the Week: Artifacts in thin-sections of Ordovician limestones from southeastern Minnesota

October 21st, 2016

1bubfirstIt is always exciting to a geologist when thin-sections of curious rocks are completed and ready for view. A thin-section is a wafer of rock (30 microns thick) glues to a glass slide and examined by transmitted light through a petrographic microscope. They provide fantastic views of the mineralogy, paleontology, and structure of a rock in exquisite detail. Thin-sections are also full of mysteries since we have essentially two-dimensional slices through three-dimensional materials.

Thin-sections from the Decorah Formation samples collecting by Team Minnesota this past summer were finally available this week for study. I took the first look at slides of limestones containing ferruginous (iron-rich) ooids we gathered as part of Etienne Fang’s (’17) Independent Study. The first structures I saw were the crazy dark outlines above. What sort of fossils are these, I wondered. Could they be sponges? Odd bryozoans? Borings through the rock fabric? I was ready to post them here as mystery fossils to solicit your opinions. Now, though, they instead make a cautionary tale.

2bub730There are many of these features in a single slide from the Decorah Formation exposed at the Golden Hill outcrop near Rochester, Minnesota. Some are astonishingly complex. It then began to occur to me that these structures were too convoluted and unpredictable to actually be fossils. It also bothered me that to focus on them required to put the rest of the field out of focus. That only made sense if these oddities were in the epoxy, not the rock itself.

3buboverlapEtienne showed me how to demonstrate that these funny loops were not in the rock with this view: You can just make out the greenish lines overlapping the cut surface of this ferruginous ooid. Turns out I was excited about air bubbles in the cementing epoxy. They have nothing to do with the rock. I nearly posted my own pseudofossils.

4trio7321I held out hope, though, that these odd white objects in another thin-section of ooid-rich limestone. They appear to be ghostly outlines of ooids with a finely-textured object inside. They look like seeds with embryos within. Several are scattered through the thin-section. Another mystery fossil!

5duo7321A closer view. Strange how each internal object seems connected to an ooid on the outside, making them asymmetrical in their placements.

6single7321Strange also how once again the details of the internal object can only be seen with the rest of the slide out of focus. Yes, another artifact in the epoxy. This time we may be looking at holes left by ferruginous ooids plucked from the rock through the grinding process, pulling a patch of epoxy with them. Somehow this happened when the now-missing ooid was wedged against another. Nothing to see here, folks.

7ooid7301fAt least I can take the opportunity to show how cool Etienne’s ferruginous ooids are. Note that this one has a greenish layer midway through the cortex. It looks like the mineral chamosite to me. Spectacular detail in the lamellae, but only visible if the image is over-exposed.

8bifoliate7301hThere are plenty of real fossils in these thin-sections, of course. My favorites are these bifoliate bryozoans (lower right half) with their zooecia filled with ferruginous material. Note that the ooid above has had some of its lamellae dissolved away, probably because of some mineral diversity. Also note in the upper right another one of those crazy air bubbles.

The lesson I learn over and over: think, but then think again.




Wooster’s Fossil of the Week: Spiriferinid brachiopod from the Lower Carboniferous of Ohio

October 14th, 2016

syringothyris-texta-hall-1857-anterior-585Sometimes I choose a Fossil of the Week from our Invertebrate Paleontology teaching collection because students have responded to it in some way. This week’s fossil brachiopod has confused my students a bit because it is an internal mold (unusual for brachiopods in our experience) and a member of the Order Spiriferinida rather than the Order Spiriferida. (Catch that? The difference is in two letters.) It is Syringothyris texta (Hall 1857) from a local exposure of the Logan Formation (Lower Carboniferous). Above is a view of the anterior showing the medial fold and sulcus (like an anticline). This, by the way, is the largest brachiopod in our collection.

syringothyris-texta-hall-1857-posterior-585Syringothyris Winchell, 1863, is a genus within the order Spiriferinida, as noted before. This order was erected in 1994, pulling it from the more familiar Order Spiriferida. In this preservation, the spiriferinids are distinguished by a high cardinal area in the posterior (shown above). Not much higher than the spiriferids, truth be told.

syringothyris-texta-hall-1857-dorsal-585This is a view of the dorsal valve side of this internal mold. Note the absence of ribs (plicae) on the fold in the middle.

a_winchellThe geologist and paleontologist Alexander Winchell (1824-1891) named and described the genus Syringothyris. We met Winchell before in this blog as he described many common fossil taxa in the Midwest. He was born in upstate New York, a seventh-generation New Englander. In 1847 he was graduated from Wesleyan University in Connecticut. He had a varied and peripatetic career, spending most of his time as a teacher of science. He first taught in New Jersey, New York and Alabama, staying a short time in each place. He founded the Mesopotamia Female Seminary in Eutaw, Alabama, and became president (briefly) of Masonic University in Selma. In 1854, Winchell was appointed professor of physics and civil engineering at the University of Michigan, a position that soon became geology and paleontology. Five years later he became the state geologist of Michigan, a job characterized by an apparently difficult relationship with his superiors. In 1872 he left Michigan to be chancellor of Syracuse University, lasting only two years. Next he was a professor of geology and zoology at Vanderbilt University, a position he was forced to resign from in 1878 due to his unbiblical views of evolution. Winchell then returned to the University of Michigan, again as a professor of geology and paleontology. There is where he died.

Winchell’s views on evolution were complicated by his religiosity, and his religious life was made difficult by evolution. He developed a kind of transcendental Darwinism in which selection was reduced to inflexible laws from the Creator, a view we would today call Intelligent Design. He then confused it all by writing a popular book called Preadamites, published in 1880. The darker races, he said, lived in Europe and Asia before Adam. Adam and the subsequent “Noachites” were derived from Negroes, according to Winchell, advancing steadily in intellectual development and whiteness while the black race and other Preadamites were left behind. This work is profoundly racist and pseudoscientific, despite the Darwinian gloss he attempted to paint over it.

a-screen-shot-2016-10-10-at-8-49-42-pmb-screen-shot-2016-10-10-at-8-57-04-pmFrontispiece of Winchell (1880).


Bork, K.B. and Malcuit, R.J. 1979. Paleoenvironments of the Cuyahoga and Logan Formations (Mississippian) of central Ohio. Geological Society of America Bulletin 90: 89–113.

Vörös, A., Kocsis, Á.T. and Pálfy, J. 2016. Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 457: 233-241.

Winchell, A. 1863. Descriptions of FOSSILS from the Yellow Sandstones lying beneath the “Burlington Limestone,” at Burlington, Iowa. Academy of Natural Sciences of Philadelphia, Proceedings, Ser. 2, vol. 7: 2-25.

Winchell, A. 1880. Preadamites; or a demonstration of the existence of men before Adam. Chicago, S.C. Griggs and Company; 500 p.

Wooster’s Fossils of the Week: Upper Ordovician strophomenid brachiopods from Iowa

October 7th, 2016

leptaena-585Since we are covering brachiopods in my paleontology course this week, I’ve chosen a very recognizable genus from the Upper Ordovician of Iowa for our Fossil of the Week. This wrinkly strophomenid brachiopod is of the genus Leptaena Dalman, 1828. It is one of the most common brachiopods in the Lower Paleozoic, ranging from the Ordovician into the Carboniferous. The two specimens above are showing their dorsal valve exteriors.

leptaena-dorsal-585The same specimens are here turned over, showing the ventral valve exterior on the left and the dorsal valve interior on the right.

I always learn something when writing these brief fossil posts. These specimens are labeled in our collections as Leptaena rhomboidalis (Wahlenberg, 1818), the most common species name I’ve seen for this genus. Hoel (2005, p. 266), however, says: “In fact, L. rhomboidalis is known only from Gotland, [Sweden,] where it was confined to moderate energy reef environments during the early Wenlockian [Silurian].” So this species is only Silurian, and only found on a Swedish island. I’ll just leave it in open nomenclature, then, as Leptaena sp. The taxonomic details of the many species in the genus are beyond my skills and experience.
gwahlenbergThe erroneous species name, though, does introduce us to a fascinating Swedish naturalist named Göran Wahlenberg (1780-1851). This man is best known as a botanist, but he also had many geological and paleontological interests. He entered Uppsala University in 1792, earning a doctorate in medicine in 1806, and then joining the faculty to teach botany and medicine (with much more emphasis on the first). He occupied the university chair previously held by the demigod taxonomist Carl Linnaeus. He was elected at a young age to the Royal Swedish Academy in 1808. Wahlenberg’s primary work was with plant biogeography, especially in Sweden, but he made many scientific forays throughout Scandinavia and into Central Europe. He named Anomites rhomboidalis in 1818, which was later added to the genus Leptaena.

Wahlenberg studied glaciers in Scandinavia, making many observations about glacial striations and moraines we would recognize today. His main overarching theory of Earth history was that massive vulcanism in the “pre-Adamite” past caused great climate changes, eventually producing a global flood, the evidence for which included glacial erratics strewn throughout northern Europe. He was one of the first naturalists to posit connections between atmospheric composition and global temperatures.

What the scientific biographies of Göran Wahlenberg don’t often mention is that he is credited as the first person to bring the pseudoscience of homeopathy to Sweden. He studied the medicinal ideas of the founder of homeopathy, Samuel Hahnemann, and declared they had merit. He was an enthusiastic advocate, making him one of the “pioneers of homeopathy”. In his defense, at that time homeopathy was no doubt safer than mainline medicine!


Hoel, O.A. 2005. Silurian Leptaeninae (Brachiopoda) from Gotland, Sweden. Paläontologische Zeitschrift 79: 263-284.

Kelly, F.B. 1967. Silurian leptaenids (Brachiopoda). Palaeontology 10: 590-602.

Wahlenberg, G., 1818. Geologisk avhandling om svenska jordens bildning. Uppsala.

Wooster’s Pseudofossil of the Week: It’s not what it looks like

September 30th, 2016

Pseudocoprolite 585Impressive, isn’t it? You can practically smell it steaming on your screen. Hard to believe this object is Miocene in age, about 6 million years old.
Pseudocoprolite top view 585Here’s another similar specimen in a top view, if we can say that.
Pseudocoprolite side view 585And here’s a side view. Notice the rich color, long, parallel striations, and “pinched” ends. If these aren’t fossil feces, officially known as coprolites, they’re excellent imitations. They’ve been prime attractions in our first paleontology lab.

These evocative objects are primarily made of siderite, making them dark and heavy. Our specimens above come from the Wilkes Formation (upper Miocene) in southwestern Washington state. They are enormously abundant and thus common in rock shops and museums around the world. In that is your first clue: how can feces with such exquisite detail be preserved so perfectly in such enormous numbers in so few places? My answer, along with many other geologists, is that these are pseudocoprolites made by inorganic means. Their extrusive nature and appropriate color gives us the illusion of poop.

I’m highlighting these objects this week because a paper appeared last month in the journal Lethaia making a case that they actually are biological in origin. Broughton (2016), in a long bit of prose and analysis, concludes that the Wilkes Formation objects are a mix of giant earthworm “mineralized intestinal remains (Type 2)” and coprolites “from unknown vertebrates” (Type 1). I don’t buy Broughton’s interpretations, but found them fascinating enough to make his paper part of a reading exercise in my paleontology class this month. The most relevant references are below so you can do your own reading and decide what these curious extrusions (or intestinal casts) are.

Let’s start with this excellent 2014 article by Brian Switek for National Geographic: “Was Six-Million-Year-Old Turd Auctioned for $10,000 a Faux Poo?” Yes, one of these curiosities actually sold for $10,370 at an auction … and it is over 100 centimeters long! (Check out the images in this NPR article on the auction. That would be an epic poop for anyone.) This auctioned specimen is an example of what Broughton (2016) calls Type 2; he believes they are essentially mineralized guts of really large burrowing earthworms. He makes his case by interpreting the striations as muscle fiber impressions, and the shapes as resulting from peristaltic motions inside the worms. (Seilacher et al., 2001, had similar ideas.) The smaller “faecal-like specimens”, like we have at Wooster, are his “Type 1”. As far as I can tell, only length separates Type 1 from Type 2 in Broughton’s classification and, as might be expected, “Some fragmentary Type 2 specimens may be misidentified as Type 1.” It is odd that Types 1 and 2 are identical in every feature but size, yet are given very different origin stories.

Critical observations to keep in mind as you explore this mystery: (1) These siderite objects have no inclusions of organic material — not a seed, woody bit, or bone fragment; (2) There are no associated vertebrate skeletal remains or other traces, and no evidence for earthworms either; (3) They are incredibly abundant in limited horizons, and unknown elsewhere; (4) They range in size from a centimeter or less to over 100 centimeters long; (5) You’d think you’d find a few squashed, now and then, or burrowed by insects, but they are in spectacular three-dimensional preservation.

I support the earlier interpretations of these excrement-appearing rocks as deformations of soft, plastic sediments by inorganic processes, as thoroughly developed by Spencer (1993), Mustoe (2001) and Yancey et al. (2013). They may have been extruded through rotting hollow logs by compaction, liquified by seismic activity, or squirted through cracks by natural gas emissions (which would be ironic!). That these pseudocoprolites were squeezed through something seems obvious; it is unlikely they came to us by way of animals.


Broughton, P.L. 2016. Enigmatic origin of massive Late Cretaceous‐to‐Neogene coprolite‐like deposits in North America: a novel palaeobiological alternative to inorganic morphogenesis. Lethaia (early view)

Mustoe, G.E. 2001. Enigmatic origin of ferruginous “coprolites”: Evidence from the Miocene Wilkes Formation, southwestern Washington. Geological Society of America Bulletin 113: 673-681.

Seilacher, A., Marshall, A., Skinner, C. and Tsuihiji, T. 2001. A fresh look at sideritic ‘coprolites’. Paleobiology 27: 7–13.

Spencer, P.K. 1993. The ‘coprolites’ that aren’t: the straight poop on specimens from the Miocene of southwestern Washington State. Ichnos 2: 231–236.

Yancey, T.E., Mustoe, G.E., Leopold, E.B. and Heizler, M.T. 2013. Mudflow disturbances in latest Miocene forests in Lewis County, Washington. Palaios 28: 343–358.

Last Wooster Geologist Presentation at #GSA2016

September 28th, 2016

Denver, CO – The honor of the last presentation at #GSA2016 goes to Amineh AlBashaireh (’18), who has a poster on her summer work at Black Mountain in San Diego, CA.

Amineh AlBashaireh ('18) has been conducting research on the occurrence and mobilization of arsenic.

Amineh AlBashaireh (’18) has been conducting research on the occurrence and mobilization of arsenic.

Congratulations, Wooster Geologists, on another successful GSA meeting!


Last Day of GSA 2016: An empty room awaits

September 28th, 2016

podium-view-092816DENVER, COLORADO — The last day of the Geological Society of America meeting has finally arrived. Early this morning the above room will begin to gather a few of the remaining participants for a series of talks, including my own. As always I am very much looking forward to it being over, which will happen precisely at 10:15 a.m. I will then rush out of the room, the Convention Center and my hotel to start the journey home.

slide01-092816I’ll share my first and last PowerPoint slides. This is an exciting project Paul Taylor and I have started. Today we may learn if it has legs or will be immediately crippled by a few cogent observations.

slide36-092816This isn’t the last of the Wooster Geology presentations. There is one more poster this afternoon that will be reported in the next post. As for me, my meeting is nearly over. Safe travels to everyone!

Day Three of Wooster Geology at GSA 2016: Structure, lakes and John Muir

September 27th, 2016

jimerson-092716DENVER, COLORADO — Cole Jimerson started us off in the poster session today at the annual meeting of the Geological Society of America.

jimerson-grilledHe faced a tough grilling at the start from none other than our own Dr. Pollock. Notice that a beer bottle has now appeared on the table!

siegel-092716Helen Siegel and her poster on structural geology in Utah (co-authored with Dr. Shelley Judge). This was a rare moment that Helen didn’t have company.

wayrynen-092716Andrew Wayrynen rounded out Team Wooster this afternoon with his poster on John Muir and Glacier Bay. Andrew is a double major in Geology and English.

Another beautiful and productive day in Denver, although we are all starting to drag a bit!

Wooster Geology Alumni at GSA 2016

September 26th, 2016

gsa-wooster-2016-585DENVER, COLORADO — Many of the Wooster Geology alumni at GSA, along with current students and professors Pollock and Wilson, gathered this evening for conversations. It was great fun with many stories and lots of good advice for our students.

dr-sophie-lehman-092616We celebrated Sophie Lehman’s (’08) brand new PhD. Congratulations, Dr. Lehman! We remember your first GSA presentation.

steph-and-amineh-092616Here is Wooster alumna Steph Jarvis talking to current student Amineh AlBashaireh. Many connections made tonight.

More later on the day of talks and posters.

Another day of Wooster Geology at GSA 2016: Volcanoes and Fossils

September 26th, 2016

jester-092616DENVER, COLORADO — On this second day of the Geological Society of America meeting we had several Wooster presenters. Above Cassidy Jester (’17) describes her developing Senior Independent Study work on Jurassic “snuff-boxes“.

wallace-and-kumpf-092616Dr. Pollock’s students Chloe Wallace and Ben Kumpf talked about their work on the geochemistry of a volcanic system in Iceland.wilson-092616

And there was me! This is my poster (With Caroline Buttler of the National Museum of Wales) on an Ordovician cave fauna.

taylor-092616Honorary Wooster Geologist Paul Taylor of the Natural History Museum in London also presented in our session. His project is the interpretation of a magnificent set of Carboniferous bryozoans.

poster-session-092616Finally, here is what a typical GSA poster session looks like. You can imagine the accompanying loud buzz of several thousand voices.

Association for Women Geoscientists Breakfast at #GSA2016

September 26th, 2016

Denver, CO – The Association for Women Geoscientists (AWG) held their annual breakfast at #GSA2016, where they recognized those people who make exceptional contributions to their mission. AWG seeks to encourage the participation of women in the geosciences, exchange information (technical, educational, professional), and enhance professional growth and advancement. After this morning’s inspirational stories, who wouldn’t want to become a member? One notable part of the program was the recognition of women geoscientists from the Mongolian Chapter of AWG.

Representatives from the Mongolian Chapter of AWG were recognized for their efforts to support women geoscientists. They began as an informal club in 2012 and were officially recognized as an international chapter of AWG in 2014.

Representatives from the Mongolian Chapter of AWG were recognized for their efforts to support women geoscientists. They began as an informal club in 2012 and were officially recognized as an international chapter of AWG in 2014.


This year’s Outstanding Educator Award winner was Barbara Dutrow, a renowned mineralogist.

Barbara Dutrow accepts the Outstanding Educator Award. One of her nominators was a former student who was profoundly affected by her undergraduate research experience with Barbara.

Barbara Dutrow accepts the Outstanding Educator Award. One of her nominators was a former student who was profoundly affected by her undergraduate research experience with Barbara.


 Me and my research students, Rachel Heineman ('17, Oberlin) and Amineh AlBashaireh ('18), at the AWG breakfast. My students had the opportunity to network with lots of influential mentors, including a CUR Councilor, GSA Fellow, potential graduate advisors, and the Outstanding Educator Award Winner.

Me and my research students, Rachel Heineman (’17, Oberlin) and Amineh AlBashaireh (’18), at the AWG breakfast. My students had the opportunity to network with lots of influential mentors, including a CUR Councilor, GSA Fellow, potential graduate advisors, and the Outstanding Educator Award Winner.


Next »