Wooster’s Fossil of the Week: A Biserial Graptolite (Middle Ordovician of Tennessee)

This week’s fossils are graptolites (from the Greek for written rocks) I found many years ago in the Lebanon Limestone near the town of Caney Springs south of Nashville, Tennessee. They are of the genus Amplexograptus and probably belong to the species A. perexcavatus (Lapworth, 1876).

Graptolites were colonial organisms consisting of hundreds and sometimes thousands of tiny zooids (individuals) connected together in a flexible proteinaceous skeleton (the rhabdosome). They first appeared in the Late Cambrian (around 510 million years ago) and disappeared forever in the Early Carboniferous (around 350 million years ago). Amplexograptus colonies were probably attached to floats so they could drift through the ancient oceans filtering out organic particles; they would be officially “passively mobile planktonic suspension feeders”. They belong to the Phylum Hemichordata, although there have always been disputes about their actual evolutionary relationships. This matters because graptolites are important index fossils for sorting out the age relationships of Lower and Middle Paleozoic rocks.

Graptolites are usually preserved as thin carbonaceous films on dark shales, making them rather hard to see (as my paleontology students will readily agree). The great 18th Century naturalist Linnaeus even said that they were “pictures resembling fossils rather than true fossils”. Sometimes, though, they are found in lighter-colored rocks like limestones, as above. Goldman et al. (2002) found Amplexograptus in limestones preserved in three dimensions, possibly because the limestones were cemented early around them before they collapsed with decay. They even studied this same species from the Lebanon Limestone. The 3-D preservation allows for a much more detailed analysis of the tiny cups (thecae) which held the individual zooids. It is possible that I could dissolve the limestone shown above and retrieve some delicate three-dimensional graptolites — but I could also just as easily destroy them.

Amplexograptus perexcavatus was originally described in 1876 by the famous geologist Charles Lapworth (1842-1920), who referred it to the genus Diplograptus. Actually, he had two species in his D. perexcavatus group, so it took some taxonomic detective and legal work to fix the current naming system. Lapworth, who I’ve figured below with an inset of his not-very-helpful diagram of the original D. perexcavatus, is well known by paleontologists for his work with graptolites as index fossils. Scientists and historians of science know him as the man who invented the Ordovician Period in 1879 to solve a bitter dispute between Roderick Murchison and Adam Sedgwick who each claimed the same rock interval in Wales for the Silurian and Cambrian periods respectively. Lapworth’s primary biostratigraphic argument for the Ordovician as a separate period was the distribution of graptolites, including our friend Amplexograptus perexcavatus. (Murchison and Sedgwick were long gone by the time their dispute was settled.)

(Charles Lapworth. Image courtesy of The Lapworth Museum of Geology.)

References:

Goldman, D., Campbell, S.M. and Rahl, J.M. 2002. Three-dimensionally preserved specimens of Amplexograptus (Ordovician, Graptolithina) from the North American mid-continent: taxonomic and biostratigraphic significance. Journal of Paleontology 76: 921-927.

Lapworth, C. 1876. The Silurian System in the South of Scotland, p. 1–28. In: Armstrong, J. Young, J. and Robertson, D. (eds.), Catalogue of Western Scottish Fossils. Blackie and Son, Glasgow.

[Originally posted August 28, 2011]

About Mark Wilson

Mark Wilson is a Professor of Geology at The College of Wooster. He specializes in invertebrate paleontology, carbonate sedimentology, and stratigraphy. He also is an expert on pseudoscience, especially creationism.
This entry was posted in Uncategorized and tagged , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.